SERVICING AND STORMWATER MANAGEMENT REPORT - 347 FRANKTOWN ROAD

Project No.: CCO-22-0025

Prepared for:

Dr. Neel Chadha 727 Bunchberry Way, Ottawa, ON, K1T 0J8,

Prepared by:

McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, ON K0A 1L0

March 25, 2022

McINTOSH PERRY

TABLE OF CONTENTS

1.0	PROJECT DESCRIPTION
1.1	Purpose1
1.2	Site Description1
2.0	PRE-CONSULTATION SUMMARY
3.0	WATERMAIN
3.1	Existing Watermain2
3	.1.1 Franktown Road
3	.1.2 Coleman Street Subdivision
3.2	Proposed Watermain
4.0	SANITARY DESIGN
4.1	Existing Sanitary Sewer
4.2	Proposed Sanitary Sewer5
5.0	STORM DESIGN
5.1	Existing Storm Sewer
5.2	Proposed Storm Sewer
6.0	STORMWATER MANAGEMENT
6.1	Design Criteria and Methodology7
6.2	Runoff Calculations
6.3	Pre-Development Drainage
6.4	Post-Development Drainage
6.5	Quantity Control9
6.6	Quality Control
7.0	EROSION AND SEDIMENT CONTROL
7.1	Temporary Measures
7.2	Permanent Measures
8.0	SUMMARY
9.0	RECOMMENDATION
10.0	STATEMENT OF LIMITATIONS

McINTOSH PERRY

LIST OF TABLES

Table 1: Water Supply Design Criteria and Water Demands	.3
Table 2: Water Pressure at Junctions per Scenario	.3
Table 3: Fire Protection Confirmation	.4
Table 4: Sanitary Design Criteria	.5
Table 5: Summary of Estimated Sanitary Flow	.5
Table 6: Pre- Development Runoff Summary	.8
Table 7: Post Development Flow Rate	.8
Table 8: Allowable Release Rate Summary	.9
Table 9: Post-Development Restricted Runoff Summary	.9
Table 10: Storage Summary1	10

APPENDICES

Appendix A: Site Location Plan Appendix B: City of Carleton Pre-Consultation Notes Appendix C: Watermain Calculations Appendix D: Sanitary Calculations Appendix E: Pre-Development Drainage Plan Appendix F: Post-Development Drainage Plan Appendix G: Stormwater Management Calculations

MCINTOSH PERRY

1.0 PROJECT DESCRIPTION

1.1 Purpose

McIntosh Perry (MP) has been retained by Dr. Neel Chadha to prepare this Servicing and Stormwater Management Report in support of the site plan approval for the proposed Phase 1 development at 347 Franktown Road within the Town of Carleton Place.

The main purpose of this report is to demonstrate that the proposed development has access to sufficient public services in accordance with the recommendations and guidelines provided by the Town of Carleton Place (Town), the Mississippi Valley Conservation Authority (MVCA) and the Ministry of the Environment, Conservation and Parks (MECP). This report will address access to water, sanitary and storm servicing for the development, ensuring that existing services will adequately service the proposed development.

1.2 Site Description

The property is located at 347 Franktown Road in the Town of Carleton Place. The subject land covers approximately 2.80 ha and is located between the proposed second phase of Coleman Street Subdivision and Franktown Road. The proposed Phase 1 development is proposed within 1.21 ha of the property.

The existing site is currently undeveloped, consisting of wooded and grassed areas. Adjacent lots to the north and south are also undeveloped. Coleman Street Subdivision Phase 2 flanks the eastern portion of the property and existing commercial and residential developments along Franktown Road are located to the west.

The Phase 1 development proposes a retirement home on the northwest portion of the property. Future development will include a Senior's apartment building in Phase 2, a medical clinic in Phase 3, and townhouses in Phase 4. Phases 1-3 will be separated from the Townhouse blocks (Phase 4) by a public ROW. The future ROW will connect the proposed development to the lands to the north and eventually to the Coleman subdivision via the lands to the south. Based on consultation with the Town of Carleton Place, separate Development Permit applications will be submitted for each phase of the proposed development. This report will provide a servicing and stormwater management strategy for Phase 1 in conformance with the Conceptual Servicing Report, available under a separate cover.

2.0 PRE-CONSULTATION SUMMARY

A pre-consultation meeting was conducted with the Town regarding the proposed site on May 21st, 2021. The notes from this meeting can be found in Appendix 'B'. Background documents available under separate cover include:

- JLR Watermain Capacity Future Development_Final (Dated September 16, 2013 completed by J.L. Richards & Associates Ltd.)
- Functional Servicing Report 347 Franktown Road (Dated August 13, 2021 completed by Mcintosh Perry Consulting Engineers Ltd.)

3.0 WATERMAIN

3.1 Existing Watermain

The following subsections outline the existing water infrastructure within Franktown Road and Coleman Street Subdivision Phase 2.

3.1.1 Franktown Road

There is an existing 300 mm diameter watermain, that runs north along Franktown Road, ending in a stub located at Findlay Avenue. Just before the stub there is a hydrant that services the existing commercial development adjacent to the subject site.

3.1.2 Coleman Street Subdivision

Although not yet constructed, the infrastructure within the proposed Coleman Street Subdivision Phase 2 is anticipated to be constructed prior to the proposed construction of the subject property. There is a proposed 200 mm diameter watermain that services the subdivision. The design of the Coleman Street Subdivision Phase 2 has taken the future development into account with stubs extending westward from the subdivision located both northeast and southeast of the subject site.

3.2 Proposed Watermain

The existing 200 mm watermain within Coleman Street Subdivision Phase 2 will be extended along the future municipal road to service the proposed development. The Phase 1 development will be serviced via a 150 mm water service lateral, as shown by C102. In accordance with the Watermain Capacity – Future Development provided by the Town of Carleton Place, the 200 mm watermain will be connected to the existing 300 mm watermain within Franktown Road. The existing 300 mm watermain within Franktown Road is proposed to be extended in order to connect with the proposed 200 mm watermain.

The Fire Underwriters Survey 1999 (FUS) method was utilized to determine the required fire flow for the proposed Phase 1 development. Due to the various phases of the development, all phases and buildings were evaluated for the worst-case scenario. It was determined that the proposed Phase 1 building was the worst case. Detailed water and fire calculations for Phase 1 can be found in Appendix 'C' of this report. Detailed calculations for Phases 2 through 4 can be found under a separate cover.

The 'C' factor (type of construction) for the FUS calculation was determined to be 1 (ordinary construction). The total floor area ('A' value) for the FUS calculation was determined to be 11,720 m². The results of the calculations yielded a required fire flow of 18,000 L/min. A required fire flow of 9,000 L/min was calculated using the Ontario Building Code (OBC) requirements. The detailed calculations for the FUS and OBC can be found in Appendix 'C'.

The water demands for the proposed building have been calculated to adhere to the *Ottawa Design Guidelines* – *Water Distribution* manual and can be found in Appendix 'C'. **Table 1**, below, summarizes the design criteria and calculated demands.

Water Demand Rate (Residential)	280 L/c/day
1-Bedroom Apartment	1.4 Persons/unit
Residential Peaking Factor (Day)	2.5 x avg. day
Residential Peaking Factor (Hour)	2.2 x max. day
Site Area (ha)	1.21
Average Day Demand (L/s)	0.69
Maximum Daily Demand (L/s)	1.72
Peak Hourly Demand (L/s)	3.79
FUS Fire Flow Requirement (L/s)	300.00
Max Day + Fire Flow (L/s)	301.72

Table 1: Water Supply Design Criteria and Water Demands

With reference to the Watermain Capacity – Future Development Pg. 18, pressures under peak demand were analyzed and a water model was completed using Bentley's WaterCAD based on those conditions. The results determined that the proposed 200mm watermain can adequately service the proposed development and provide sufficient fire flow since the proposed Hydrant H-1 and H-2 produced available fire flows of 19,005 L/min and 15,893 L/min. Refer to drawing C101 for Hydrant locations. The results are available in Appendix 'C' of this report.

The normal operating pressure range is anticipated to be 449 kPa to 462 kPa and will not be less than 275 kPa (40 psi) or exceed 689 kPa (100 psi). The proposed watermain will meet the minimum required 20 psi (140 kPa) at the ground level under maximum day demand and fire flow conditions. *Table 2*, below, summarizes the water pressure at junctions per scenario.

Table 2: Water Pressure at Junctions per Scenario

Junction	Average Day (psi)	Peak Hourly (psi)	Max. Day + Fire Flow (psi)
J-1	66.65	66.36	67.51
J-2	66.83	65.60	66.37
J-3	66.65	65.44	66.12
J-4	66.65	65.43	66.12
J-5	65.11	64.94	65.36
J-6	67.07	66.87	67.63

In order to provide the required fire flow for the worst case but also for all other cases, two private hydrants have been proposed within the site. The proposed hydrants have been placed to ensure a maximum distance of 45 m to the proposed development. Location details are shown on the Site Servicing Plan included with the report. A hydrant summary can be seen in *Table 3*, below.

Table 3: Fire Protection Confirmation

Building	Fire Flow	Fire Hydrant(s)	Fire Hydrant(s)	Combined Fire
	Demand (L/min.)	within 75m	within 150m	Flow (L/min.)
347 Franktown Road	18,000	2	0	>18,000

4.0 SANITARY DESIGN

4.1 Existing Sanitary Sewer

Although not yet constructed, Coleman Street Subdivision Phase 2 has a proposed 200 mm diameter sanitary sewer with stubs located to the northeast and southeast of the subject site.

4.2 Proposed Sanitary Sewer

The proposed 200 mm sanitary sewer stub within Coleman Street Subdivision is proposed to be extended along the future municipal road to service the subject property. A 200 mm diameter service lateral will be connected from the proposed building to the proposed 200 mm diameter sanitary sewer extension.

The peak design flow was calculated for the proposed site using the Ottawa Sewer Design Guidelines (SDG). Design criteria used in the sanitary demand calculation can be seen in *Table 4*, below.

Table 4: Sanitary Design Criteria

1-Bedroom	1.4 persons/unit
Average Daily Demand	280 L/day/person
Residential Peaking Factor	3.51
Extraneous Flow Allowance	0.33 L/s/ha

Table 5, below, summarizes the estimated wastewater flow from the proposed Phase 1 development. Refer to Appendix 'D' for detailed calculations.

Table 5: Summary of Estimated Sanitary Flow

Average Dry Weather Flow	0.79 L/s
Peak Dry Weather Flow	2.54 L/s
Peak Wet Weather Flow	2.87 L/s

Based on the calculation provided in the Coleman Street Subdivision Phase 2 Servicing Report and the results shown in *Table 5*, above, it is anticipated that there will be no downstream capacity concerns. Flow from the subject site has been accounted for in the Coleman Street Subdivision design, as demonstrated by the calculation sheet included in Appendix 'D'.

Further downstream of Coleman Street Subdivision Phase 2 a sanitary sewer upgrade is to take place as per "CCO-18-0360-01 - Offsite Sanitary Servicing Memo_Rev1" (See Appendix 'D' for full memorandum). Flows from the subject site were taken into consideration in the memorandum at a rate of 60 pp/ha which

corresponds to a flow rate of 4.24 L/s. The proposed Phase 1 development will result in a flow rate of 2.87 L/s. Phases 1 through 4 will have a combined flow of 7.28 L/s. However, based on the capacity shown for the proposed sanitary sewer upgrade in the memorandum, the additional 3.04 L/s of flow can be accommodated and therefore no capacity issues are anticipated given the upgrade is completed. Sanitary sizing calculations can be found in Appendix 'D'.

5.0 STORM DESIGN

5.1 Existing Storm Sewer

There is no existing storm infrastructure within the subject property. Stormwater runoff currently sheet drains to the southeast where it is collected by the existing creek.

5.2 Proposed Storm Sewer

The proposed development will be serviced by a new storm network that will outlet to the existing creek located to the southeast. This creek is being regraded in order to accommodate storm flows from Coleman Street Subdivision Phase 2. In its reconstruction flows from the subject site will also be considered. Unrestricted runoff will sheet flow off site and restricted flow within Phase 1 will be stored as required and released to the proposed storm sewer network at the allowable release rate. A combination of roof storage and surface storage will be utilized to meet the SWM criteria provided by the Town of Carleton Place.

6.0 STORMWATER MANAGEMENT

6.1 Design Criteria and Methodology

Stormwater management for the proposed site will be maintained through positive drainage away from the building and towards the adjacent ROW's. The quantitative and qualitative properties of the storm runoff for both the pre & post development flows are further detailed below. The proposed development will result in higher runoff coefficient. The post-development 5 and 100-year flows will be restricted to the pre-development 5 and 100-year flows.

6.2 Runoff Calculations

Runoff calculations presented in this report are derived using the Rational Method, given as:

Q = 2.78 CIA (L/s)

Where C = Runoff coefficient

Т

= Rainfall intensity in mm/hr (City of Ottawa IDF curves)

A = Drainage area in hectares

It is recognized that the Rational Method tends to overestimate runoff rates. As a result, the conservative calculation of runoff ensures that any stormwater management facility sized using this method is anticipated to function as intended.

The following coefficients were used to develop an average C for each area:

Roofs/Concrete/Asphalt	0.90
Gravel	0.60

Undeveloped and Grass 0.20

As per the *City of Ottawa - Sewer Design Guidelines*, the 5-year balanced 'C' value must be increased by 25% for a 100-year storm event to a maximum of 1.0.

The time of concentration (Tc) used for pre-development and post-development shall be calculated using a Tc of 10 minutes.

6.3 Pre-Development Drainage

The existing site drainage limits are demonstrated on the Pre-Development Drainage Area Plan. A summary of the Pre-Development Runoff Calculations can be found in *Table 6, below*.

Table 6: Pre- Development Runoff Summary

Drainage Area	Area (ha)	Runoff Coefficient (5-Year)	Runoff Coefficient (100-Year)	5-year Peak Flow (L/s)	100-year Peak Flow (L/s)
A1	1.21	0.20	0.25	69.82	149.58

See CCO-22-0025 - *PRE* in Appendix 'E' and Appendix 'G' for calculations.

6.4 **Post-Development Drainage**

The proposed site drainage limits are demonstrated on the Post-Development Drainage Area Plan. See CCO-22-0025 - *POST* in Appendix 'F' of this report for more details. A summary of the Post-Development Runoff Calculations can be found in **Table 7**, below.

Table 7: Post Development Flow Rate

Drainage Area	Area (ha)	Runoff Coefficient (5-Year)	Runoff Coefficient (100-Year)	5-year Peak Flow (L/s)	100-year Peak Flow (L/s)
B101	0.23	0.90	1.00	60.43	115.06
B102	0.27	0.69	0.77	54.73	105.37
B103	0.35	0.53	0.61	54.68	106.69
B104	0.19	0.66	0.74	35.98	69.43
B105	0.15	0.72	0.81	32.29	62.03
Total	1.21			238.12	458.58

See Appendix 'G' for calculations. Runoff for area B101 – B104 will be restricted before outletting to the existing creek located to the southeast. The flow will be controlled through the use of roof drains for area B1 as well as

inlet control device for areas B102 to B104. Runoff from areas B105 will leave the site unrestricted. Quantity and quality control will be further detailed in Sections 6.5 and 6.6.

6.5 Quantity Control

The total post-development runoff for this site has been restricted to match the 5-year and 100-year predevelopment flow rates calculated with a combined C value. (See Appendix 'B' for pre-consultation notes). These values create the following allowable release rate and storage volumes for the development site.

Table 8: Allowable Release Rate Summary

Drainage Area	Area (ha)	Runoff Coefficient 5-Year	Runoff Coefficient 100-Year	Required Restricted Flow 5-Year (L/s)	Required Restricted Flow 100-Year (L/s)
A1	1.22	0.20	0.25	69.82	149.58

See Appendix 'G' for calculations.

Reducing site flows will be achieved using a flow restriction and will create the need for onsite storage. Runoff from area B101 to B104 will be restricted as shown in *Table 9*, below.

Table 9: Post-Development Restricted Runoff Summary

Drainage Area	Post Dev Unrestricte	elopment ed Flow (L/s)	Post Dev Restricted	velopment d Flow (L/s)	
	5-Year	100-Year	5-Year	100-Year	
B101	60.43	115.06	5.28	9.12	Restricted – Roof Drains
B102	54.73	105.37	12.75	12.88	Restricted – ICD
B103	54.68	106.69	1.78	1.95	Restricted – ICD
B104	35.98	69.43	17.34	17.96	Restricted - ICD
B105	32.29	62.03	32.29	62.03	Unrestricted
Total	238.12	458.58	69.44	103.95	

See Appendix 'G' for calculations.

Runoff from area B101 will be restricted using roof drains before discharging to the proposed storm sewer, downstream of MH101. Emergency roof scuppers will be installed to ensure ponding does not exceed the proposed ponding limit.

Runoff from area B102 will be restricted by an ICD located within CBMH3. This will backup stormwater runoff from the site above the CB structures within the parking lot. The area will pond to elevations of 134.78 and 134.84 for the 5-year and 100-year storms, respectively. Flows exceeding the 100-year rate will be directed towards the swale northwest of the proposed building before reaching finished floor elevation.

McINTOSH PERRY

Drainage from area B103 will be directed into a swale, where it will discharge into a depressed surface storage area. An ICD within CB4 will then restrict the flow leaving the area to the allowable release rate. The area will pond to elevations of 134.03 and 134.41 for the 5-year and 100-year storms, respectively. In the event of flows exceeding the 100-year rate, stormwater will overflow the storage area into the swale before reaching finished floor elevation and exit the site to the northeast.

Drainage from area B104 will be restricted with an ICD located within CB101-2. The area will pond to elevations of 134.55 and 134.76 for the 5-year and 100-year storms, respectively. Flows exceeding the 100-year rate will discharge to the east towards the future public road.

60.85

30.77

62.27

11.23

N/A

Storage

Required

(m³)

96.83

75.51

135.83

34.41

N/A

100-Year

Storage

Available

(m³)

104.31

79.57

137.73

35.10

N/A

A storage summary can be seen in *Table 10*, below.

Drainage Area Storage (m³) Storage (m³)

49.77

29.98

61.30

11.19

N/A

B101

B102

B103

B104

B105

Table 10: Storage Summary

6.6 Quality Control

The development of this lot will employ Best Management Practices (BMP's) wherever possible. The intent of implementing stormwater BMP's is to ensure that water quality and quantity concerns are addressed at all stages of development. BMP's at this site will be implemented at the lot level. Lot level BMP's typically include temporary retention of the parking lot runoff, minimizing ground slopes and maximizing landscaped areas.

A quality treatment unit has been sized to provide a TSS removal rate of 80% as per the Mississippi Valley Conservation Authority (MVCA) requirements. The Oil and Grit Separator (OGS) will provide a water quality of at least 80% TSS. The OGS Unit shall be placed downstream of the restriction unit to provide the required water quality treatment for the site runoff before discharging to the existing creek southeast of the site.

7.0 EROSION AND SEDIMENT CONTROL

7.1 Temporary Measures

Before construction begins, temporary silt fence, straw bale or rock flow check dams will be installed at all natural runoff outlets from the property. It is crucial that these controls be maintained throughout construction and inspection of sediment and erosion control will be facilitated by the Contractor or Contract Administration staff throughout the construction period.

Silt fences will be installed where shown on the final engineering plans, specifically along the downstream property limits. The Contractor, at their discretion or at the instruction of the City, Conservation Authority or the Contract Administrator shall increase the quantity of sediment and erosion controls on-site to ensure that the site is operating as intended and no additional sediment finds its way off site. The rock flow, straw bale & silt fence check dams and barriers shall be inspected weekly and after rainfall events. Care shall be taken to properly remove sediment from the fences and check dams as required. Fibre roll barriers are to be installed at all existing curb inlet catchbasins and filter fabric is to be placed under the grates of all existing catchbasins and manholes along the frontage of the site and any new structures immediately upon installation. The measures for the existing/proposed structures are to be removed only after all areas have been paved. Care shall be taken at the removal stage to ensure that any silt that has accumulated is properly handled and disposed of. Removal of silt fences without prior removal of the sediments shall not be permitted.

Although not anticipated, work through winter months shall be closely monitored for erosion along sloped areas. Should erosion be noted, the Contractor shall be alerted and shall take all necessary steps to rectify the situation. Should the Contractor's efforts fail at remediating the eroded areas, the Contractor shall contact the City and/or Conservation Authority to review the site conditions and determine the appropriate course of action. As the ground begins to thaw, the Contractor shall place silt fencing at all required locations as soon as ground conditions warrant. Please see the *Site Grading, Drainage and Sediment & Erosion Control Plan* for additional details regarding the temporary measures to be installed and their appropriate OPSD references.

7.2 Permanent Measures

It is expected that the Contractor will promptly ensure that all disturbed areas receive topsoil and seed/sod and that grass be established as soon as possible. Any areas of excess fill shall be removed or levelled as soon as possible and must be located a sufficient distance from any watercourse to ensure that no sediment is washed out into the watercourse. As the vegetation growth within the site provides a key component to the control of sediment for the site, it must be properly maintained once established. Once the construction is complete, it will be up to the landowner to maintain the vegetation and ensure that the vegetation is not overgrown or impeded by foreign objects.

8.0 SUMMARY

- A new 3,360 m² retirement home is proposed to be constructed as part of the Phase 1 development at 347 Franktown Road, Carleton Place.
- A new 200mm water main will be extended from the proposed Phase 2 of Coleman Subdivision to Franktown Road.
- The FUS method estimated fire flow indicated 18,000 L/min is required for the proposed development.
- Based on boundary conditions provided by the Town, the proposed 200 mm watermain and two private hydrants are capable of meeting daily and fire flow demands.
- A new 200mm sewer main will be installed and connected to the proposed stub at phase 2 of Coleman Subdivision
- The development is anticipated to have a peak wet weather flow of 2.87 L/s. A proposed 200 mm diameter sanitary main will collect and outlet flow to the proposed 200 mm diameter sanitary stub located within Phase 2 of Coleman Street Subdivision. Based on the sanitary analysis conducted in the Coleman Street Subdivision Phase 2 Servicing Report, the subdivisions sanitary network has sufficient capacity for the subject site's flow.
- A new storm system will be installed on-site to capture storm runoff and restrict flows to predevelopment rates. The new storm system will discharge to the existing creek southeast of the site.
- Storage for the 5 and 100-year storm events will be provided via roof storage and surface storage.

9.0 RECOMMENDATION

Based on the information presented in this report, we recommend that Town of Carleton Place approve this Servicing and Stormwater Management Report in support of the proposed development at 347 Franktown Road.

This report is respectfully being submitted for approval.

Regards,

McIntosh Perry Consulting Engineers Ltd.

Robert Freel, P.Eng. Senior Project Manager, Land Development T: 613.714.6174 E: r.freel@mcintoshperry.com

Venn /

Nicholas Vachon, E.I.T. T: 613.875.1334 E: <u>n.vachon@mcintoshperry.com</u>

U:\Ottawa\01 Project - Proposals\2022 Jobs\CCO\CCO-22-0025 Chadha_347 Franktown Rd\Servicing\Report\CCO-22-0025 - 347 Franktown Road - Servicing Report - Phase 1.docx

McINTOSH PERRY

10.0 STATEMENT OF LIMITATIONS

This report was produced for the exclusive use of Dr. Neel Chadha. The purpose of the report is to assess the existing stormwater management system and provide recommendations and designs for the post-construction scenario that are in compliance with the guidelines and standards from the Ministry of the Environment, Parks and Climate Change, Town of Carleton Place and local approval agencies. McIntosh Perry reviewed the site information and background documents listed in Section 2.0 of this report. While the previous data was reviewed by McIntosh Perry and site visits were performed, no field verification/measures of any information were conducted.

Any use of this review by a third party, or any reliance on decisions made based on it, without a reliance report is the responsibility of such third parties. McIntosh Perry accepts no responsibility for damages, if any, suffered by any third party as a result of decisions or actions made based on this review.

The findings, conclusions and/or recommendations of this report are only valid as of the date of this report. No assurance is made regarding any changes in conditions subsequent to this date. If additional information is discovered or becomes available at a future date, McIntosh Perry should be requested to re-evaluate the conclusions presented in this report, and provide amendments, if required.

APPENDIX A SITE LOCATION PLAN

McINTOSH PERRY

APPENDIX B TOWN OF CARLETON PLACE PRE-CONSULTATION NOTES

TOWN OF CARLETON PLACE 175 Bridge St. Carleton Place K7C 2V8 jbowes@carletonplace.ca

PRE-CONSULTATION FOR DEVELOPMENT PERMIT APPROVAL

Section 70.2 of the Planning Act, RSO 1990, as amended

A meeting with the Planning and Development staff is required prior to the submission of any development application. At this meeting an approval stream and submission requirements will be determined.

Date: May 21, 2021		Time: 10:30am		
CONTACT INFORMATION				
Name/Title:	Mailing Address ar	nd Postal Code	: (P)Phone # / (F)Fax # / (E) Email Address	
Applicant/Agent			(P):	
Ben Clare, McIntosh Perry			(F):	
			(E): b.clare@mcintoshperry.cor	
Property Owner(s)			(P):	
			(F):	
Neel Chadha (puricaser)			(E):neelchadha@gmail.com	
	LEGAL DESCRIPTION	l		
Municipal Address: lands associated Legal Description:	with 347 Franktown Roa	id - subject to	severance	
CON 11 SW 1/2 PT	LOT 15 RP;26R3022 PT F		(m^2)	
15m	300+/-m		3.1ha	
Official Plan Designation: Residential	on: Development Permit Designation: Residential Residential			
Previous Applications (if any): Current	y subject to consent applica	ation B21-043 -	lot addition/consolidation	
PROPOSED APPLICATION				
Applicant proposes the developmer	t of a four phase retirement	t villa over the	entirety of the site.	
Phase 1 to include a four story / 15	52 unit retirement home			
Phase 2 includes a 4-story / 70 un	it apartment building with in	idoor undergro	und parking	
Phase 3 includes a 1 story / 2 unit commercial plaza with complementary uses to the retirement home				
Phase 4 includes 18 street townhomes - possibly free hold				
Will also include 1 municipal road (north-south orientation) on eastern portion of the site.				

TOWN OF CARLETON PLACE

175 Bridge St. Carleton Place K7C 2V8

	CLASS OF DEVELOPMENT PERMIT REQUIRED			
<u>Class</u> <u>Comment</u>				
Class 1 🔿				
Class 1A 🛛 🔿				
Class 2 🔿				
Class 3 🛛 🎸	Site plan respecting Phase 1 and if needed	variations to standards (ie frontage)		
Other 🎸	DPA to change use from Residential to Instituti	onal - holding provisions on future phases		
POTEN	TIAL SUPPORTING STUDIES AND REPORTS	Notes		
Technical repo	orts/plans or studies may be required to assist	Note: The project will also require a		
in the review	process of a Development Permit Application.	subdivision application to divide the site		
The identified	studies or reports are required prior to the	and dedicate the municipal ROW. This		
submission of	an application for Development Permit.	may come first, or after the development of Phase 1 Phases 2-4 cannot occur until		
Study require	ments for DP3	access is demonstrated on an open and		
L Archae	ological Assessment	public road.		
	g Materials Samples	-		
🖌 Buildin	g Shadow Impact Assessment Study	I he proponent is suggesting that the		
🛛 Colour	ed Perspective Drawings	construction of Phase 1 as detailed in		
🗹 Site Pla	in	the attached plan in the short-term. It is		
Construction	uction Traffic Management Plan	also suggested that the entire vision of the		
🔽 Cost Es	timate for External Works	site be circulated at time of application to		
🛛 Enviror	nmental Impact Statement	ensure transparancy of full build out.		
	Butternut? YES or NO	Holding provisions to be used to further		
Enviror	nmental Site Assessment	regulate luture phases.		
🛛 Servicii	ng Report	Density in excess of 70 units/ha without an		
🛛 Heritag	ge Impact Assessment Report	OPA will be a challenge. Suggest DPA to		
🛛 Illumin	ation and Traffic Signal Plan	identify the proposed use as Intitutional vs		
🛛 Landsc	ape Plan	conventional residential to demonstrate		
🛛 Natura	l Heritage Evaluation	sites		
🛛 Noise A	Attenuation Study			
🛛 Parking	and Loading Study	Applicant to evaluate extent of area to		
□ Pavem	ent Marking and Signage Plan	include as institutional vs. Res.		
Photog	raphs of Existing Context	DPA and DP3 applications can be filed		
🛛 Plannir	ng Rationale Report	concurrently, and can be presented		
□ Refere	nce Plan for Land Conveyances	and circulated jointly.		
□ Sight-li	ne Study			
□ Source	Water Protection	I ne utility plan and cost estimate of site		
Transn	ortation/Traffic Impact Study	will not be required at the time of application		
Tree In	ventory	submission given that these are typically		
	reservation Plan	completed as the detailed civil engineering		
🖸 Hrban	Design Brief	design is advanced.		
	s Plan	That scoped versions of the trop inventory		
	(as required by the Town)	and tree conservation report will be		
	as required by the rowing	acceptable provided they satisfy the		
		requirements of Section 3.44 of the		
ы нуагоg		Development Permit By-law, including		
✓ Stormv	vater ivianagement	compensation requirements for trees		
	alculation	and hackberry trees.		

	SIGNATURES			
This form m	This form must be signed by the future applicant and by the Director of Development Services or his/her			
designate a	nd a copy should accompany the application for a D	Development Permit.		
Signature: _		Date:		
	Owner/Applicant			
	MM .			
Signature:	111/3/	Date: June 11, 2021		
	Director of Development Services/Designate			

G Planning for Building Code Compliance

The following are some of the more common items that are typically non-compliant or missing at the plans review stage. This checklist should be used as a guideline only and does not contain all the building code requirements and other applicable laws. Drawings and documentation submitted should contain enough information to verify compliance with all parts of the 2012 Ontario Building Code.

- ✓ OBC Data Matrix
 - Usually supplied by architect but should be provided for all new construction including additions and renovations (ensure exiting and washroom requirements are also included).
- ✓ <u>Designer Requirements</u>
 - Ensure the proper designer is taking responsibility for their drawings and any on-site review
 - Designer requirements can be found in Division C Part 3
 - Architect and/or Engineer review requirements can be found in Division C Part 1
- ✓ Grading Plan Must be supplied to show:
 - Top of slab to verify that floor drain and storm are set to an elevation to ensure gravity drainage to Municipal services at street level
 - Existing grade and proposed grade to verify drainage away from building will not affect neighbouring properties
- ✓ <u>Site Plan Must be supplied to show:</u>
 - Fire routes & fire hydrants
 - Spatial separations
 - Number of streets for classification (defined as a percentage)
- ✓ Barrier Free Construction
 - Required for all new construction except as listed in 3.8.1.1 of the Ontario Building Code
 - Parking and barrier free path of travel
 - Barrier free bathroom dimensions
 - Hardware
- ✓ <u>Building Classification</u>
 - Ensure enough information is provided to classify the building where it may not be clear (such as providing a list of materials being stored on site)
 - Identify use of rooms and tenant classification that may occupy portions of the building
- ✓ <u>Architectural/Mechanical/Electrical/Structural Drawings</u>
 - Provide door schedule, identifying rated doors and exit hardware
 - Emergency systems (ex: fire alarm, exit signage & emergency lighting)
 - Identify location of janitorial supplies, service rooms, electrical rooms (regulated under the Electrical Act), fire dampers, etc.
 - Identify types of materials to be used in above grade mechanical rough-in and plenum spaces in compliance with the type of construction under the building classification in 3.2.2.
 - Structural loads (based on climate data and Part 4)

✓ Fire Separations

- Roofs, floors, walls, exits, between tenants, doors, load bearing walls, etc.
- Ensure the proper use of the tables in SB2 and SB3 are used
- ✓ <u>Additional Documents</u> To verify materials or processes not covered under the Ontario Building Code, for example, EIFS, fabric type roofs, composite decking etc.
 - CCMC report, Minister Rulings and/or BMEC (Building Materials Evaluation Commission)
 - Manufacturers details and installation guidelines
 - Other Federal or Provincial approvals

TOWN OF CARLETON PLACE URBAN FOREST COMMITTEE GUIDELINES & STANDARDS FOR TREE PLANTING AND CONSERVATION PLANS

The Town shall require Conservation Plans and Tree Planting plans for all development including residential, commercial, and industrial uses.

Tree Conservation Plan:

The conservation plan will have a preliminary assessment by a qualified professional (certified arborist, registered professional forester or other qualified professional), which will determine stands of trees or individual trees on the property which warrant protection. This plan should consider such matters as:

- The existing health of the tree, grouping of trees or woodlot, hackberry and the quality of such and
- Its degree of sensitivity to grade changes, drainage disruption, changes in water table or any other factors, which may affect the trees.
- Measures that can be taken to protect the trees (tree wells)
- If trees can not be protected, why not
- Opportunities for tree planting to mitigate loss of tree or forest cover.

The conservation plan will identify how these trees will be protected both above and below ground, as it is important to protect the root systems from soil compaction. The following measures will be undertaken to protect these trees:

- 1. The identified tree or trees to be protected will be fenced off, a minimum, to the drip line (furthest point of extension of branches) to protect the roots from soil compaction.
- 2. Above ground utilities shall avoid, where possible, the crowns of the trees.
- 3. Below ground utilities shall avoid where possible damaging the root system of trees. If utilities are to be placed below ground they are to be placed directly under the tree so not to damage the fine root hairs of the extended root system.
- 4. Tree roots that will be damaged must be cut cleanly to avoid ragged edges so they will heal properly. If exposed they must be moistened immediately and covered with moist material.
- 5. No equipment, trucks and storage of supplies shall be inside the fenced area.
- 6. No grading shall take place around the protected tree or trees.

In short the professional should be asking these questions:

- 1. Are there trees that can be protected due to size, rareness or they are a healthy stand that would add to the community.
- 2. If trees are going to be protected how will this be done during construction and after the project is complete.
- 3. If trees cannot be protected why not.
- 4. If trees cannot be protected what is the mitigating measure going to be for lose of trees. I.e. enhanced treeplanting program.

Tree Planting Plan:

The Planting plan will identify where additional trees are to be planted, which species and size of trees to be planted and how these trees will be planted and maintained.

The planting plan will identify:

1. <u>Where trees will be planted:</u>

- The site plan must identify where trees will be planted.
- At least one tree shall be planted for each residential lot developed unless a large number of trees have been removed for the development then an enhanced tree planting program will be undertaken.
- Industrial and commercial development site plans shall incorporate multiple trees.
- Prior to planting the developer must identify the location of underground utilities; present, planned and potential future locations.
- 2. <u>Species and size of trees to be Planted</u>
 - trees will be from seed from plant hardiness zone 4b, 4a or 5a or seed zones 35 and 36.
 - the developer will plant a 60 mm (2.5 ins) caliper deciduous tree or a conifer tree minimum height 2.0 m.
 - to avoid monocultures at least 4 deciduous and 1 conifer species will be selected from the list (Table 1) and approved by town staff.

	Deciduous	Conifer
Larger Trees for Larger	Sugar Maple (Acer saacharum)	White Pine (Pinus strobes)
Lots	Red Maple (Acer rubrum)	White Spruce (<i>Picea glaoca</i>)
	Silver maple (Acer saccharium)	Norway Spruce (Picea abies)
	Red Oak (Quercus rubra)	Blue Spruce(developers are
	Bur Oak (Quercus macrocarpa)	encouraged to use this species on the harder sites i.e. Hwy 7)
	Hackberry (Celtis occidentalis)	
	Freeman Maple (Acer <i>x fremanii)</i>	
	Basswood (Tilia americana)	
	Bitternut Hickory (Carya cordiformis	
Medium Sized Trees	White Birch (Betula papyrifera)	Eastern White Cedar (Thuja
	Little Leaf Linden (<i>Tilia</i>	occidentalis)
	encouraged to use this species on the harder site i.e. Hwy 7)	Tamarack (Larix <i>laricina</i>)
	Honey Locust (Gleditisia triacanthos)	
Smaller Trees for Smaller	Showy Mountain Ash (Sorbus	
Lots	decora)	
	Serviceberry (Amelanchier)	
	Crabapple (<i>Malus</i>)	
	Nannyberry (Viburnum lentago)	

A. Table 1 Species of Tree for planting by Developers

3. <u>Tree Planting</u>

The International Society of Arborists, the Canadian Nursery Trades Association or Landscape Ontario standards of planting and maintenance are to be followed:

- Excavate to a depth 200mm deeper then the height of the root ball, with a width 750 mm greater than the root ball.
- Loosen the planting hole to a depth of 200mm
- Loosen burlap and cut away minimum at least 50% of the burlap without disturbing the root ball (if in a wire basket cut away as much of the wire basket while the tree is in the hole)
- Place plant material to a depth equal to the depth they were originally growing in the nursery.
- Tamp soil around the root system in layers of 150 mm to eliminate air pockets. When 2/3 of the planting soil has been placed file the hole with water. After the water has penetrated into the soil, complete backfilling.
- Build a 100mm deep saucer around the outer edge of the hole to assist with watering.
- The hardwood trees will be staked following International Society of Arborist standards.
- The trees will be mulched to a depth of 10 mm filling the saucer leaving 50 mm free around the trunk to avoid trunk rot.
- The trees will be watered one week after planting and every 2 weeks thereafter, pending weather conditions, until the area developed is no longer the responsibility of the developer.

Jim McCready R.P.F./ ISACertified Arborist

November 15, 2019

APPENDIX C WATERMAIN CALCULATIONS

McINTOSH PERRY

CCO-22-0025 - 347 Franktown Rd - Phase 1 - Water Demands

Project:	347 Franktown Rd -	Phase 1	
Project No.:	CCO-22-0025		
Designed By:	BGS		
Checked By:	RDF		
Date:	August 9, 2021		
Site Area:		1.21 gross ha	
Units	1 Bedroom	152 Units	
Persons:	212.80 People		

AVERAGE DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	280	L/c/d
Industrial - Light	35,000	L/gross ha/d
Industrial - Heavy	55,000	L/gross ha/d
Campgrounds	225	L/(campsite/d)
Mobile Home Parks	1,000	L/(Space/d)
Motel	150	L/(bed-space/d)
Hotels	225	L/(bed-space/d)
Tourist Commercial	28,000	L/gross ha/d
Other Commercial	28,000	L/gross ha/d
		•

AVERAGE DAILY DEMAND 0.6

0.69

L/s

MAXIMUM DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	2.5 x avg. day	L/c/d
Industrial	1.5 x avg. day	L/gross ha/d
Commercial	1.5 x avg. day	L/gross ha/d
Institutional	1.5 x avg. day	L/gross ha/d

MAXIMUM DAILY DEMAND	1.72	L/s
----------------------	------	-----

MAXIMUM HOUR DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	2.2 x max. day	L/c/d
Industrial	1.8 x max. day	L/gross ha/d
Commercial	1.8 x max. day	L/gross ha/d
Institutional	1.8 x max. day	L/gross ha/d
MAXIMUM HOUR DEMAND	3.79	L/s

WATER DEMAND DESIGN FLOWS PER UNIT COUNT CITY OF OTTAWA - WATER DISTRIBUTION GUIDELINES, JULY 2010

CCO-22-0025 - 347 Franktown Rd - Phase 1 - OBC Fire Calculations

Project:	347 Franktown Rd - Phase 1	
Project No.:	CCO-22-0025	
Designed By:	BGS	
Checked By:	RDF	
Date:	August 9, 2021	

Ontario 2006 Building Code Compendium (Div. B - Part 3)

Water Supply for Fire-Fighting - Care Occupancies & Residential

Building is classified as Group : C

(from table 3.2.2.55)

From Div. B A-3.2.5.7. of the Ontario Building Code - 3. Building On-Site Water Supply:

(a) Q = K x V x Stot

where:

Q = minimum supply of water in litres

K = water supply coefficient from Table 1

V = total building volume in cubic metres

Stot = total of spatial coefficient values from the property line exposures on all sides as obtained from the formula:

Stot = 1.0 + [Sside1+Sside2+Sside3+...etc.]

		_						From
к	10	(from Table 1 pg A	-31) (Worst case occupancy {B3 / C	} 'K' value used)				Figure 1
V	28,573	(Total building vol	ume in m³.)					(A-32)
Stot	1.0	(From figure 1 pg	4-32)		Snorth	20	m	0.0
Q =	285,730.0	DL			Seast	45	m	0.0
					Ssouth	49	m	0.0
From Table 2: Required Minin	num Water Supply	Flow Rate (L/s)			Swest	33	m	0.0
					*appr	oximate d	istan	ces

9000 L/min if Q > 270,000 L 2378 gpm

CCO-22-0025 - 347 Franktown Rd - Phase 1 - Fire Underwriters Survey

Project:	347 Franktown Rd - Phase 1
Project No.:	CCO-22-0025
Designed By:	BGS
Checked By:	RDF
Date:	August 9, 2021

From the Fire Underwriters Survey (1999)

From Part II – Guide for Determination of Required Fire Flow Copyright I.S.O.: Updated per City of Ottawa Technical Bulletin ISTB-2018-02

A. BASE REQUIREMENT (Rounded to the nearest 1000 L/min)

- $F = 220 \times C \times \sqrt{A}$ Where:
- **F** = Required fire flow in liters per minute
- **C** = Coefficient related to the type of construction.
- A = The total floor area in square meters (including all storey's, but excluding

basements at least 50 percent below grade) in the building being considered.

Construction Type Ordinary Construction

Caludated Pire Flow 23,817.0 L/min 24,000.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) Standard Water Supply Sprinklered -40% Reduction -40% -8,160.0 L/min D. INCREASE FOR EXPOSURE (No Rounding) Separation Distance (m) Cons. of Exposed Wall Length Exposed Adjacent Wall (m) Length- Height (Stories) Length- Height Factor xposure 1 >45 Non-Combustible 98 4 392.0 0% xposure 2 3.1 to 10 Non-Combustible 26 4 104.0 20%	B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) Standard Water Supply Sprinklered -40% Reduction -8,160.0 L/min D. INCREASE FOR EXPOSURE (No Rounding) Separation Distance (m) Cons.of Exposed Wall Length Exposed Adjacent Wall (m) (Stories) Factor Exposure 1 >45 Non-Combustible 98 4 392.0 0% Exposure 2 3.1 to 10 Non-Combustible 26 4 104.0 20%	0% 20%	L/min Length- Height Factor 392.0 104.0	-8,160.0 Height (Stories) 4 4	Length Exposed Adjacent Wall (m) 98 26	of Exposed Wall -Combustible -Combustible	POSURE (No Rounding) on Distance (m) >45 3.1 to 10	Reducti D. INCREASE F Se Exposure 1 Exposure 2
Caludated Fire Flow 23,817.0 L/min 24,000.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) -15% From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) -15% Standard Water Supply Sprinklered -40% Reduction -8,160.0 L/min D. INCREASE FOR EXPOSURE (No Rounding) -40% Separation Distance (m) Cons.of Exposed Wall Length Exposed Adjacent Wall (m) Separation Distance (m) Cons.of Exposed Wall Length Exposed Adjacent Wall (m) Yob 245 Non-Combustible 98 4 392.0 0%	24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow C, REDUCTION FOR SPRINKLER TYPE (No Rounding) Standard Water Supply Sprinklered -40% Reduction Length Exposed Length- Length Exposed Ads Ads Von-Combustible 98 <td colspa="2</td> <td>0%</td> <td>L/min Length- Height Factor 392.0</td> <td>-8,160.0 Height (Stories) 4</td> <td>Length Exposed Adjacent Wall (m) 98</td> <td>of Exposed Wall</td> <td>POSURE (No Rounding) on Distance (m) >45</td> <td>Reducti D. INCREASE F Se xposure 1</td>	0%	L/min Length- Height Factor 392.0	-8,160.0 Height (Stories) 4	Length Exposed Adjacent Wall (m) 98	of Exposed Wall	POSURE (No Rounding) on Distance (m) >45	Reducti D. INCREASE F Se xposure 1
Caludrated Fire Flow 23,817.0 L/min 24,000.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) -15% From note 2, Page 18 of the Fire Underwriter Survey: -15% Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) -15% Standard Water Supply Sprinklered -40% Reduction -8,160.0 L/min D. INCREASE FOR EXPOSURE (No Rounding) Length- Securities Distance (m) Cause of Exposed	B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) Standard Water Supply Sprinklered -40% Reduction -8,160.0 L/min D. INCREASE FOR EXPOSURE (No Rounding) Standard Water Supply Sprinklered -40%		L/min Length- Height	-8,160.0 Height	Length Exposed	-6 F	POSURE (No Rounding)	Reducti D. INCREASE F
CaldClated Fire Flow 23,817.0 L/min 24,000.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) -15% From note 2, Page 18 of the Fire Underwriter Survey: -15% Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) -40% Standard Water Supply Sprinklered -40% Reduction -8,160.0 L/min	B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) -15% From note 2, Page 18 of the Fire Underwriter Survey: -15% Limited Combustible -15% C. REDUCTION FOR SPRINKLER TYPE (No Rounding) 20,400.0 L/min Standard Water Supply Sprinklered -40% Reduction -8,160.0 L/min		L/min	-8,160.0				Reducti
Caludiated Fire Flow 23,817.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) Standard Water Supply Sprinklered	B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) Standard Water Supply Sprinklered -40%							
Caluciated Fire Flow 23,817.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15%	B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15% Fire Flow 20,400.0 L/min					;) -40%	SPRINKLER TYPE (No Ro	C. REDUCTION Standar
Caluciated Fire Flow 23,817.0 L/min 24,000.0 L/min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15%	B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From note 2, Page 18 of the Fire Underwriter Survey: Limited Combustible -15%		L/min	20,400.0				Fire Flo
Caluciated Fire Flow 23,817.0 L/min 24,000.0 L/min	24,000.0 E/IIIII					n <mark>g)</mark> ⁻ Survey: -15%	OCCUPANCY TYPE (No I Page 18 of the Fire Under Limited Combustible	B. REDUCTION From no
	Caluclated Fire Flow 23,817.0 L/min		L/min L/min	23,817.0 24,000.0			e Flow	Calucia

Fire Flow 18,360.0 L/min Fire Flow Required** 18,000.0 L/min

 * In accordance with Part II, Section 4, the Increase for separation distance is not to exceed 75%

**In accordance with Section 4 the Fire flow is not to exceed 45,000 L/min or be less than 2,000 L/min

Label	Elevation (m)	Demand (L/min)	Pressure (psi)	Hydraulic Grade (m)
J-1	131.50	63.00	66.65	178.45
J-4	131.50	4.80	65.65	177.75
J-3	131.50	0.00	65.65	177.75
J-5	131.50	31.20	65.11	177.37
J-2	131.50	0.00	65.83	177.88
J-6	131.50	0.00	67.07	178.75

Active Scenario: Average Day - Existing Conditions

CCO-22-0025 - Water Model.wtg 2021-08-03

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD [10.03.02.75] Page 1 of 1

Label	Elevation (m)	Demand (L/min)	Pressure (psi)	Hydraulic Grade (m)
J-1	131.50	344.40	66.36	178.25
J-4	131.50	27.00	65.43	177.60
J-3	131.50	0.00	65.44	177.60
J-5	131.50	170.40	64.94	177.25
J-2	131.50	0.00	65.60	177.71
J-6	131.50	0.00	66.87	178.61

Active Scenario: Peak Hourly - Existing Conditions

Label	Is Fire Flow Run Balanced?	Satisfies Fire Flow Constraints?	Fire Flow (Needed) (L/min)	Fire Flow (Available) (L/min)	Pressure (psi)	Elevation (m)	Demand (L/min)	Pressure (Residual Lower Limit) (psi)
H-2	True	True	18,000.00	19,005.35	65.66	132.00	0.00	20.00
H-1	True	False	18,000.00	15,892.98	66.92	132.00	0.00	20.00
J-1	False	False	18,000.00	(N/A)	67.51	131.50	156.00	20.00
J-4	False	False	18,000.00	(N/A)	66.12	131.50	12.00	20.00
J-3	False	False	18,000.00	(N/A)	66.12	131.50	0.00	20.00
J-5	False	False	18,000.00	(N/A)	65.36	131.50	77.40	20.00
J-2	False	False	18,000.00	(N/A)	66.37	131.50	0.00	20.00
J-6	False	False	18,000.00	(N/A)	67.63	131.50	0.00	20.00

Active Scenario: Max Day + Fire Flow - Existing Conditions

CCO-22-0025 - Water Model.wtg 2021-08-03

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD [10.03.02.75] Page 1 of 1

APPENDIX D SANITARY CALCULATIONS

McINTOSH PERRY

CCO-22-0402 - 347 Franktown Road - Phase 1 - Phase 1 Sanitary Demands

Project:	347 Franktown Road - Phase 1							
Project No.:	CCO-22-0025							
Designed By:	R.R.R.							
Checked By:	N.B.V.							
Date:	March 25, 2022							
Site Area	1.21	Gross ha						
1 Bedroom	152		1.40	Persons per unit				
Total Population	212.80	Persons						
Commercial Area	350.00	m ²		_				
Amenity Space	771.00	m ²		_				

DESIGN PARAMETERS

Institutional/Commercial Peaking Facto	1.5	*Check technical bulleting (Either use 1.0 or 1.5)
Residential Peaking Factor	3.51	* Using Harmon Formula = 1+(14/(4+P^0.5))*0.8
		where P = population in thousands, Harmon's Correction Factor = 0.8
Mannings coefficient (n) 0.	.013	
Demand (per capita)	280	L/day
Infiltration allowance	0.33	L/s/Ha

EXTRANEOUS FLOW ALLOWANCES

Flow (L/s)
0.06
0.34
0.40

AVERAGE DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS	POPULATION / AREA	Flow (L/s)
Residential	280	L/c/d	213	0.69
Industrial - Light**	35,000	L/gross ha/d		0
Industrial - Heavy**	55,000	L/gross ha/d		0
Commercial / Amenity	2,800	L/(1000m² /d)	1121.00	0.04
Hospital	900	L/(bed/day)		0
Schools	70	L/(Student/d)		0
Trailer Parks no Hook-Ups	340	L/(space/d)		0
Trailer Park with Hook-Ups	800	L/(space/d)		0
Campgrounds	225	L/(campsite/d)		0
Mobile Home Parks	1,000	L/(Space/d)		0
Motels	150	L/(bed-space/d)		0
Hotels	225	L/(bed-space/d)		0
Office	75	L/7.0m ² /d		0
Tourist Commercial	28,000	L/gross ha/d		0
Other Commercial	28,000	L/gross ha/d		0

AVERAGE RESIDENTIAL FLOW	0.69	L/s
PEAK RESIDENTIAL FLOW	2.42	L/s
AVERAGE ICI FLOW	0.04	L/s
PEAK INSTITUTIONAL/COMMERCIAL FLOW	0.05	L/s
PEAK INDUSTRIAL FLOW	0.00	L/s
TOTAL PEAK ICI FLOW	0.05	L/s

TOTAL SANITARY DEMAND

TOTAL ESTIMATED AVERAGE DRY WEATHER FLOW	0.79	L/s
TOTAL ESTIMATED PEAK DRY WEATHER FLOW	2.54	L/s
TOTAL ESTIMATED PEAK WET WEATHER FLOW	2.87	L/s

** PEAK INDUSTRIAL FLOW PER CITY OF OTTAWA SEWER DESIGN GUIDELINES APPENDIX 4B

SANITARY SEWER DESIGN SHEET

PROJECT: LOCATION:

CLIENT:

Dr Neel Chadha

347 Franktown Road

		LOCATIO	DN					F	RESIDENTIA							ICI AREAS INFILTRATION ALLOWANCE FLOW							SEWER DATA								
1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
						UNIT	TYPES		AREA	POPUL	ATION		PEAK			AREA	(ha)			PEAK	AREA	(ha)	FLOW	DESIGN	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAIL	ABLE
STREET		AREA I	D FROM	то	1.050	2.050	T 11	ADT	(ha)	IND	CUM	PEAK	FLOW	INSTITU	TIONAL	сомм	ERCIAL	INDU	STRIAL	FLOW	IND	CUM	(1/2)	FLOW	(1.4.)	()	(10/1	(full)	CAPA	CITY
			МН	МН	I-DED	2-DED	in	APT	(IId)	IND	COIVI	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)	IND	COIVI	(L/S)	(L/s)	(L/S)	(111)	(mm)	(70)	(m/s)	L/s	(%)
			MH101A	MH102A	152			70	1.92	373.8	374	3.43	5.19	0.42	0.42	0.04	0.04		0.00	0.22	2.38	2.38	0.78	6.20	19.36	145.59	200	0.32	0.597	13.16	67.98
			MH105A	MH102A			12		0.26	32.4	32	3.68	0.48	0.00	0.00		0.00		0.00	0.00	0.26	0.26	0.09	0.57	19.36	87.61	200	0.32	0.597	18.79	97.06
			MH102A	MH103A			12		0.28	32.4	439	3.40	6.04	0.42	0.42		0.00		0.00	0.20	0.70	0.70	0.23	6.48	19.36	87.61	200	0.32	0.597	12.88	66.52
			MH106A	MH103A				96	0.95	134.4	134	3.56	1.94				0.00		0.00	0.00	0.95	0.95	0.31	2.25	19.36	87.61	200	0.32	0.597	17.10	88.35
			MH103A	MH104A						0.0	573	3.35	7.79		0.42		0.00		0.00	0.20	0.00	0.00	0.00	7.99	19.36	12.90	200	0.32	0.597	11.37	58.72
			MH104A	MH207A						0.0	573	3.35	7.79		0.42		0.00		0.00	0.20	0.00	0.00	0.00	7.99	19.36	35.74	200	0.32	0.597	11.37	58.72
Design Parameters:					Notes:	1						Designed:		RRR			No.					Revision		<u> </u>					Date		
					1 Mannin	gs coefficien	t (n) =		0 013								1 ISSUED FOR REVIEW								2022-03-25						
Residential			ICI Areas		2. Demand	d (per capita)):	350	L/dav																						
1-BED 1.4	n/n/u			Peak Factor	3 Infiltrati	ion allowance	,	0.33	L/s/Ha			Checked:		NBV																	
TH/SD 2.7	p/p/u	INST	28.000 L/Ha/day	1.5	4. Residen	tial Peaking I	Eactor:	0.55	2, 3, 1.0																		<u> </u>				
2-BED 1.4	p/p/u	COM	28.000 L/Ha/day	1.5		Harmon Fo	rmula = 1+(1	4/(4+P^0.5)	*0.8)									1									<u> </u>				
Apt 2.3	p/p/u	IND	35.000 L/Ha/day	MOE Chart		where P = r	population ir	thousands	,			Proiect No.		CCO-22-002	5												<u> </u>				
Other 60	p/p/Ha	-	,,									.,			-		I												Sheet No:		
	F/F/																												1 of 1		

McINTOSH PERRY

MEMORANDUM

То:	Robin Daigle, E.I.T.
From:	Tyler Ferguson, P.Eng.
Date:	May 4 th , 2021
Re:	Conceptual Sanitary Servicing – Coleman Central Subdivision Phase 2 & Additional Lands

MP has reviewed the *Nu Globe Sanitary Capacity Memorandum* from the Town of Carleton Place dated September 6th, 2018. The memo has detailed the sanitary sewer capacities downstream of the Coleman Central Subdivision (Phases 1 & 2).

Prior to the development of the Coleman Central Subdivision, there was an available capacity of 20.81 L/s within the section of sewer running across the Independent Grocer property (MH100a to MH 301 on the attached plan from the Town's Memo). The total flow generated by Phase 1 of the Coleman Central Subdivision, including the future commercial lands (areas R1 and C1), was calculated to be 17.97 L/s per the latest *Final Servicing Report*. Therefore, the remaining capacity in this section of sewer (from MH100a to MH301) is 2.84 L/s.

Based on the current Draft Plan for Coleman Central Phase 2 (5.20), the sanitary flows were calculated to be 7.39 L/s, which would leave the above-noted section of pipe deficient by 4.55 L/s.

The additional lands along Franktown Road have a measured area of 13.07 hectares and will generate an approximate flow of 15.24 L/s assuming a population of 60 p/p/ha. On a combined basis, Phase 2 of Coleman Central and the additional Franktown Road lands will generate flows of 22.63 L/s and leave the Independent Grocer pipe deficient by 19.79 L/s.

The following upgrades would be required from MH101 to MH301 in order for the proposed development(s) to be serviced:

Pipe	Pipe Size	Length	Required Pipe Size
MH101 - MH101b	300mm	111.60	375mm
MH101b - MH100a	300mm	39.60	375mm
MH100a - MH100c	300mm	40.00	375mm
MH100c - MH100d	300mm	62.50	450mm
MH100d - MH100e	300mm	65.00	450mm
MH100e - MH301	300mm	100.00	450mm

The required pipe sizes are based on the assumption that sanitary drainage area C4 (commercial lands north of Highway 7) is developed. The upgrades proposed are required for any property that gets developed along Highway 7 past the current development limit (Thruway Restaurant). Any future development along the north side of Highway 7 would need to be included in the future cost sharing agreement.

Based on the current developed areas, the sanitary sewers downstream of MH301 are not required to be upgraded with the addition of Coleman Central Phase 2 and the additional lands along Franktown Road. However, when sanitary drainage areas C4-2 and I1 (industrial lands south of Highway 7 and west of Franktown Road) are developed in the future, additional upgrades downstream of MH301 may be required. At this time, we have assumed that this will be completed by others as those properties are developed in the future. We have also assumed there is remaining capacity in the downstream pump station.

Should you have any questions or concerns, please do not hesitate to contact the undersigned.

u:\ottawa\01 project - proposals\2018 jobs\cco\cco-18-0360-01 cavanagh_nuglobe subdivision ph 2_carleton place\civil\03 - servicing\offsite sanitary sewer\cco-18-0360-01 - offsite sanitary servicing memo.docx

Option One - No New McNeely Crossing

SANITARY SEWER DESIGN SHEET

PROJECT: Offsite Sanitary - Coleman Central Subdivison Phase 2

LOCATION: CLIENT: Carleton Place Cavanagh Developments Ltd.

	LOCATI	ON							RESIDENTIA	L							ICI AREAS				INFILTR	ATION ALLO	WANCE	FLOW				SEWER DAT	Α		
1	2	3	4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
						UNIT	TYPES		AREA	POPU	LATION		PEAK			ARE	A (ha)			PEAK	AREA	۹ (ha)	FLOW	DESIGN	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
STREET	AREA ID	FROM	и то		CE.	SD.	ти	ADT	(ha)	IND	CUM	PEAK	FLOW	INSTIT	UTIONAL	COMM	IERCIAL	INDU	STRIAL	FLOW		CUM	(1./2)	FLOW	(1. (2)	(m)	(mm)	(9/)	(full)	CAP	ACITY
		МН	МН	1	эг	30	10	APT	(11d)	IND	COIVI	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)		COIVI	(L/S)	(L/s)	(L/S)	(11)	(1111)	(70)	(m/s)	L/s	(%)
																													1		í
	EX-1								7.12	427.2											7.12										
	EX-2								5.95	357.0											5.95										
Coleman Phase 2	201 - 210	102	102	b	14	10	50	68	5.20	366.0	1150.2	3.76	17.52								5.20	18.27	5.12	22.63	53.70	60.00	300	0.28	0.736	31.06	57.85
		102b	102	с						0.0	1150.2	3.76	17.52								0.00	18.27	5.12	22.63	51.12	66.20	300	0.26	0.701	28.49	55.72
	C3	102c	101	L						0.0	1150.2	3.76	17.52			3.90	3.90			3.41	3.90	22.17	6.21	27.14	50.04	81.30	300	0.25	0.686	22.90	45.76
	R1, C1, C2		101	L	35	38	61	77	8.88	563.4	563.4	3.95	9.01			11.07	11.07			9.69	19.95	19.95	5.59	24.28							
	C5	101	101	b						0.0	1713.6	3.64	25.25			0.70	15.67			13.71	0.70	42.82	11.99	50.95	89.97	111.60	375	0.24	0.789	39.02	43.37
		101b	100	а						0.0	1713.6	3.64	25.25			0.00	15.67			13.71	0.00	42.82	11.99	50.95	91.92	39.60	375	0.25	0.806	40.97	44.57
	C4	100a	100	с						0.0	1713.6	3.64	25.25			14.60	30.27			26.49	14.60	57.42	16.08	67.81	105.07	40.00	375	0.33	0.922	37.26	35.46
	C6	100c	100	d						0.0	1713.6	3.64	25.25			5.70	35.97			31.47	5.70	63.12	17.67	74.39	112.87	62.50	450	0.14	0.687	38.47	34.09
		100d	100	e						0.0	1713.6	3.64	25.25			0.00	35.97			31.47	0.00	63.12	17.67	74.39	140.48	65.00	450	0.22	0.856	66.09	47.04
		100e	301	L						0.0	1713.6	3.64	25.25			0.00	35.97			31.47	0.00	63.12	17.67	74.39	132.68	100.00	450	0.20	0.808	58.29	43.93
																															í
Design Parameters:				No	otes:							Designed:		NBV			No.					Revision							Date		
				1.	. Mannings	s coefficient	: (n) =		0.013								1				lss	ued For Revi	iew						2021-04-27		
Residential		ICI Areas		2.	. Demand	(per capita)	:	350) L/day																						
SF 3.4 p/p/u			Peak Fa	actor 3.	. Infiltratio	on allowance	e:	0.28	L/s/Ha			Checked:		TDF																	
TH/SD 2.7 p/p/u	INST	28,000 L/Ha/day	2.7	4.	. Residenti	ial Peaking F	actor:																								
APT 2.3 p/p/u	COM	28,000 L/Ha/day	2.7		1	Harmon For	-mula = 1+(14/(4+P^0.5)*1)																						
Other 60 p/p/Ha	IND	35,000 L/Ha/day	2.7		,	where P = p	opulation i	n thousands				Project No	:	CCO-18-03	60-01																
																													Sheet No:		
																													1 of 1		

McINTOSH PERRY

APPENDIX E PRE-DEVELOPMENT DRAINAGE PLAN

APPENDIX F POST-DEVELOPMENT DRAINAGE PLAN

INAME: U;\Ottawa\01 Project - Proposals\2022 Jobs\CCO\CCO-22-0025 Chadha_347 Franktown Rd\Drawings\CCO-22-0025 Present T SAVED: Friday, March 25, 2022 LAST SAVED BY: F.Valenti T PLOTTED: Friday, March 25, 2022 CTB FILE USED: ---- APPENDIX G STORMWATER MANAGEMENT CALCULATIONS

McINTOSH PERRY

CCO-22-0025 - Franktown - Runoff Calculations

Pre-Development Runoff Coefficient											
Drainage Area Impervious Gravel Pervious Cure Cure											
Aroo	(ha)	Area	С	Area	С	Area	С	CAVG			
Alea	(11d)	(m ²)		(m²)		(m ²)		5-rear	100-Year		
A1	1.21	0.00	0.90	0.00	0.60	12,053.00	0.20	0.20	0.25		

Pre-Development Runoff Calculations

Drainage	Area (ha)	C 2/5-Year	C 100-Voor	Tc (min)		ا (mm/hr)			Q (L/s)		
Alea	(114)	2/ 3 -1 Cai	100-1641	(11111)	2-Year	5-Year	100-Year	2-Year	5-Year	100-Year	
A1	1.21	0.20	0.25	10	76.8	104.2	178.6	51.47	69.82	149.58	Phase 1
Total	1.21							51.47	69.82	149.58]

Post-Development Runoff Coefficient

Drainago	Aroa	Impervious		Gravel		Pervious		Curr	C
Aroo	(ha)	Area	С	Area	С	Area	С		AVG
Alea	(114)	(m ²)		(m²)		(m²)		2/5-Year	100-Year
B101	0.23	2,317.92	0.90	0.00	0.60	0.00	0.20	0.90	1.00
B102	0.27	1,914.00	0.90	0.00	0.60	835.00	0.20	0.69	0.77
B103	0.35	1,683.00	0.90	0.00	0.60	1,865.00	0.20	0.53	0.61
B104	0.19	1,233.90	0.90	0.00	0.60	659.10	0.20	0.66	0.74
B105	0.15	1,151.19	0.90	0.00	0.60	393.90	0.20	0.72	0.81

Post-Development Runoff Calculations

Drainage	Area	C 2/E Voor	C 100 Voor	Tc (min)	ا (mm/hr)			Q (L/s)			
Area	(11d)	2/5-fear	100-fear	(11111)	2-Year	5-Year	100-Year	2-Year	5-Year	100-Year	
B101	0.23	0.90	1.00	10	76.8	104.2	178.6	44.54	60.43	115.06	Roof
B102	0.27	0.69	0.77	10	76.8	104.2	178.6	40.35	54.73	105.37	Parking
B103	0.35	0.53	0.61	10	76.8	104.2	178.6	40.31	54.68	106.69	Rear Yard
B104	0.19	0.66	0.74	10	76.8	104.2	178.6	26.53	35.98	69.43	Private Road
B105	0.15	0.72	0.81	10	76.8	104.2	178.6	23.80	32.29	62.03	Front Unrestricted
Total	1.21							175.52	238.12	458.58]

1 of 10

CCO-22-0025 - Franktown - Runoff Calculations

Required R	estricted Fl	ow						2 of 10
Drainage Area	Area (ha)	C 5-Year	C 100-Year	Tc (min)	l (mm/hr) 5-Year	l (mm/hr) 100-Year	Q (L/s) 5-Year	Q (L/s) 100-Year
A1	1.21	0.20	0.25	10	104.2	178.6	69.82	149.58
Total	1.21							

Post-Development Restricted Runoff Calculations

Drainage	Unrestrie (L	cted Flow /s)	Restric (L	ted Flow /s)	Storage (n	Required n ³)	Storage (n	Provided n ³)	
Alea	5-Year	100-Year	5-Year	100-Year	5-Year	100-Year	5-Year	100-Year	
B101	60.43	115.06	5.28	9.12	49.77	96.83	60.85	104.31	Roof
B102	54.73	105.37	12.75	12.88	28.98	75.51	30.77	79.57	Parking
B103	54.68	106.69	1.78	1.95	61.30	135.83	62.27	137.73	Rear Yard
B104	35.98	69.43	17.34	17.96	11.19	34.41	11.23	35.10	Private Road
B105	32.29	62.03	32.29	62.03	х	х	х	х	Front Unrestricted
Total	238.12	458.58	69.44	103.95	151.24	342.57	165.12	356.71]

CCO-22-0025 - Franktown - B101 Roof Storage

Storage Requirements for Area B101

5-Year Storm Event

Tc (min)	l (mm/hr)	B101 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
10	104.2	60.43	5.28	55.15	33.09
20	70.3	40.74	5.28	35.46	42.55
30	53.9	31.27	5.28	25.99	46.79
40	44.2	25.62	5.28	20.34	48.83
50	37.7	21.84	5.28	16.56	49.67
60	32.9	19.11	5.28	13.83	49.77
70	29.4	17.03	5.28	11.75	49.37
80	26.6	15.40	5.28	10.12	48.60
90	24.3	14.09	5.28	8.81	47.55
100	22.4	12.99	5.28	7.71	46.29

Maximum Storage Required 5-Year (m³) = 49.77

100-Year Storm Event

Tc (min)	l (mm/hr)	B1 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
10	178.6	115.06	9.12	105.94	63.56
20	120.0	77.29	9.12	68.17	81.81
30	91.9	59.20	9.12	50.08	90.14
40	75.1	48.42	9.12	39.30	94.33
50	64.0	41.21	9.12	32.09	96.27
60	55.9	36.02	9.12	26.90	96.83
70	49.8	32.08	9.12	22.96	96.45
80	45.0	28.99	9.12	19.87	95.38

Maximum Storage Required 100-Year (m³) = 96.83

5-Year Storm Event

Roof Storage									
Location Area* Depth (m³)									
Roof	1738.44	0.035	60.85						
Total 60.85									

100-Year Storm Event

Roof Storage									
Location Area* Depth (m³)									
Roof	1738.44	0.060	104.31						
Total 104.31									

*Storage area is 75% of the total roof area

Storage Available (m³) =	60.85
Storage Required (m ³) =	49.77

Storage Available (m³) =	104.31
Storage Required (m ³) =	96.83

3 of 10

CCO-22-0025 - Franktown - B101 Roof Storage

Roof Drain Flow (B101)

/					
Roof Drains Summary Type of Control Device Watts Drianage - Accutrol Weir Number of Roof Drains 12 S-Year 100-Year Roofton Storage (m ³) 60.85 104.31					
Roof Drains Summary Type of Control Device Watts Drianage - Accutrol Weir Number of Roof Drains 12 Storage (m³) 60.85 104.31 Storage Depth (m) 0.035 0.060 Flow (Per Roof Drain) (L/s) 0.44 0.76					
Number of Roof Drains	12				
	Summary Watts Drianage - Accutrol Weir 12 5-Year 100-Year 60.85 104.31 0.035 0.060 0.44 0.76 5.28 9.12				
Rooftop Storage (m ³)	60.85	104.31			
Storage Depth (m)	0.035	0.060			
Flow (Per Roof Drain) (L/s)	0.44 0.76				
Total Flow (L/s)	5.28	9.12			

Flow Rate Vs. Build-Up (One Weir) Flow (L/s) Depth (mm) 0.19 15 0.25 20 0.32 25 30 0.38 0.44 35 40 0.50 0.57 45 50 0.63 55 0.69

*Roof Drain model to be Accutrol Weirs, See attached sheets *Roof Drain Flow information taken from Watts Drainage website

CALCULATING ROOF FLOW EXAMPLES

2 roof drains during a 5 year storm elevation of water = 30mm Flow leaving 2 roof drains = (2 x 0.36 L/s) = 0.72 L/s

2 roof drains during a 100 year storm

elevation of water = 45mm Flow leaving 2 roof drains = (2 x 0.54 L/s) = 1.08 L/s

	Roof Drain Flow						
	Flow (l/s)	Storage Depth (mm)	Drains Flow (I/s)				
	0.19	15	2.28				
	0.25	20	3.00				
	0.32	25	3.84				
	0.38	30	4.56				
5-Year	0.44	35	5.28				
	0.50	40	6.00				
	0.57	45	6.84				
	0.63	50	7.56				
	Kool Drain How Flow (I/s) Storage Depth (mm) Drains Flow (I/s) 0.19 15 2.28 0.25 20 3.00 0.32 25 3.84 0.38 30 4.56 0.44 35 5.28 0.50 40 6.00 0.57 45 6.84 0.63 50 7.56 0.69 55 8.28 0.76 60 9.12 0.82 65 9.84 0.88 70 10.56 0.95 75 11.40 1.01 80 12.12 1.07 85 12.84 1.13 90 13.56 1.20 95 14.40 1.26 100 15.12 1.32 105 15.84 1.39 110 16.68 1.45 115 17.40 1.51 120 18.12 1.58						
100-Year	0.76	60	9.12				
100-Year 	0.82	65	9.84				
	0.88	70	10.56				
	0.95	75	11.40				
	1.01	80	12.12				
	1.07	85	12.84				
	1.13	90	13.56				
	1.20	95	14.40				
	1.26	100	15.12				
	1.32	105	15.84				
	1.39	110	16.68				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.40						
	1.51	0.50 40 6.00 0.57 45 6.84 0.63 50 7.56 0.69 55 8.28 0.76 60 9.12 0.82 65 9.84 0.88 70 10.56 0.95 75 11.40 1.01 80 12.12 1.07 85 12.84 1.13 90 13.56 1.20 95 14.40 1.26 100 15.12 1.32 105 15.84 1.39 110 16.68 1.45 115 17.40 1.51 120 18.12 1.58 125 18.96 1.64 130 19.68 1.70 135 20.40 1.76 140 21.12 1.83 145 21.96					
1.20 1.26 1.32 1.39 1.45 1.51 1.58	125	18.96					
	1.64	130	19.68				
	1.70	135	20.40				
	1.76	140	21.12				
	1.83	145	21.96				
	1.89	150	22.68				

<u>Note</u>: The flow leaving through a restricted roof drain is based on flow vs. head information

CCO-22-0025 - Franktown - B102 Storage Calculations

Storage Requirements for Area B102

5 of 10

5-Year Storm Event

Tc (min)	l (mm/hr)	B102 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
10	104.2	54.73	12.75	41.98	25.19
15	83.6	43.89	12.75	31.14	28.03
20	70.3	36.90	12.75	24.15	28.98
25	60.9	31.99	12.75	19.24	28.86
30	53.9	28.33	12.75	15.58	28.04
35	48.5	25.49	12.75	12.73	26.74
40	44.2	23.21	12.75	10.46	25.10

Maximum Storage Required 5-Year (m³) = 28.98

100-Year Storm Event

Tc (min)	l (mm/hr)	B102 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
10	178.6	105.37	12.88	92.49	55.49
15	142.9	84.33	12.88	71.44	64.30
20	120.0	70.79	12.88	57.90	69.48
25	103.8	61.28	12.88	48.40	72.60
30	91.9	54.21	12.88	41.33	74.39
35	82.6	48.73	12.88	35.85	75.28
40	75.1	44.35	12.88	31.46	75.51

Maximum Storage Required 100-Year (m³) = 75.51

5-Year Storm Event Storage Summary

Water El	ev. (m) =	134.78		_
T/G	INV. (out)	Head (m)	Depth (m)	Volume (m ³)
134.55	131.87	2.88	0.23	30.8

Storage Available (m ³) =	30.8
Storage Required (m ³) =	29.0

100-Year Storm Event Storage Summary

Water E	lev. (m) =	134.84		
T/G	INV. (out)	Head (m)	Depth (m)	Volume (m ³)
134.55	131.87	2.94	0.29	79.6

Storage Available (m ³) =	79.6
Storage Required (m ³) =	75.5

*Storage Calculated in AutoCAD

*Storage Calculated in AutoCAD

CCO-22-0025 - Franktown - B102 Orifce Calculations

						6 of 10
For Orifice Flow, C=	0.60					
For Weir Flow, C=	1.84	Orifice 1	Orifice 2	Weir 1	Weir 2	
	invert elevation	131.87]
	center of crest elevation	131.90				
	orifice width / weir length	60 mm				1
	orifice height					-
	orifice area (m ²)	0.003	0.000	-		

			Eleva	tion Discharge	Table - Storm	Routing				
Elevation	Orif	ice 1	Orif	ice 2	We	Weir 1		Weir 2		
Elevation	H [m]	Q [m⁵]	H [m]	Q [m³]	H [m]	Q [m³]	H [m]	Q [m³]	Q [l/s]	
134.55	2.65	0.012							12.23	
134.56	2.66	0.012							12.26	
134.57	2.67	0.012							12.28	
134.58	2.68	0.012							12.30	
134.59	2.69	0.012							12.32	
134.60	2.70	0.012							12.35	
134.61	2.71	0.012							12.37	
134.62	2.72	0.012							12.39	
134.63	2.73	0.012							12.42	
134.64	2.74	0.012							12.44	
134.65	2.75	0.012							12.46	
134.66	2.76	0.012							12.48	
134.67	2.77	0.013							12.51	
134.68	2.78	0.013							12.53	
134.69	2.79	0.013							12.55	
134.70	2.80	0.013							12.57	
134.71	2.81	0.013							12.60	
134.72	2.82	0.013							12.62	
134.73	2.83	0.013							12.64	
134.74	2.84	0.013							12.66	
134.75	2.85	0.013							12.69	
134.76	2.86	0.013							12.71	
134.77	2.87	0.013							12.73	
134.78	2.88	0.013							12.75	5
134.79	2.89	0.013							12.77	Т
134.80	2.90	0.013							12.80	
134.81	2.91	0.013							12.82	1
134.82	2.92	0.013							12.84	٦
134.83	2.93	0.013							12.86	
134.84	2.94	0.013							12.88	1
134.85	2.95	0.013							12.91	T

Notes: 1. For Orifice Flow, User is to Input an Elevation Higher than Crown of Orifice.

2. Orifice Equation: $Q = cA(2gh)^{1/2}$

3. Weir flow calculated in Bentley's FlowMaster - Trapezoidal Channel at 0.8%, 3:1 side slopes, roughness coeff. Of 0.035

4. These Computations Do Not Account for Submergence Effects Within the Pond Riser.

5. H for orifice equations is depth of water above the centroide of the orifice.

6. H for weir equations is depth of water above the weir crest.

CCO-22-0025 - Franktown - B103 Storage Calculations

Storage Requirements for Area B103

7 of 10

5-Year Storm Event

Tc (min)	l (mm/hr)	B103 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
140	17.3	9.06	1.78	7.28	61.19
145	16.8	8.82	1.78	7.04	61.24
150	16.4	8.59	1.78	6.81	61.28
155	15.9	8.37	1.78	6.59	61.29
160	15.6	8.16	1.78	6.39	61.30
165	15.2	7.97	1.78	6.19	61.28
170	14.8	7.78	1.78	6.01	61.26

Maximum Storage Required 5-Year (m³) = 61.30

100-Year Storm Event

Tc (min)	l (mm/hr)	B103 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
270	17.3	10.33	1.95	8.38	135.79
275	17.0	10.18	1.95	8.23	135.81
280	16.8	10.04	1.95	8.08	135.82
285	16.6	9.89	1.95	7.94	135.83
290	16.3	9.76	1.95	7.81	135.82
295	16.1	9.62	1.95	7.67	135.81
300	15.9	9.50	1.95	7.54	135.78

Maximum Storage Required 100-Year (m³) = 135.83

5-Year Storm Event Storage Summary

Water Elev. (m) =		134.03		_
T/G	INV. (out)	Head (m)	Depth (m)	Volume (m ³)
133.45	131.87	1.86	0.58	62.3

Storage Available (m ³) =	62.3
Storage Required (m ³) =	61.3

100-Year Storm Event Storage Summary

Water Elev. (m) =		134.41		_
T/G	INV. (out)	Head (m)	Depth (m)	Volume (m ³)
133.45	131.87	2.24	0.96	137.7

Storage Available (m ³) =	137.7
Storage Required (m ³) =	135.8

*Storage Calculated in AutoCAD

*Storage Calculated in AutoCAD

CCO-22-0025 - Franktown - B103 Orifce Calculations

								8	of 10	
For Orifice F	low, C=	0.60								
For Weir Flo	w, C=	1.84		Orifice 1	Orifice 2	Weir 1	Weir 2	-		
		i	nvert elevation	132.16				4		
		center of	crest elevation	132.17				4		
		orifice width	n / weir length	25 mm						
			orifice height							
		0	rifice area (m ²)	0.000	0.000					
			Elevati	on Discharg	e Table - Storm	Routing				7
	Ori	fice 1	Orific	• 2	We	ir 1	We	ir 2	Total	
Elevation	H [m]		H [m]	د <u>۲</u> ۵ [m³]	H [m]	0 [m³]	H [m]	0 [m ³]		
134.00	1.83	0.002		of fun 1		Q [m]	[]	et fini 1	1 76	4
134.00	1.85	0.002							1.70	-
134.02	1.85	0.002							1.77	-
134.03	1.86	0.002							1.78	5-Year
134.04	1.87	0.002				1		1	1.78	-
134.05	1.88	0.002				1	1	1	1.79	1
134.06	1.89	0.002				1	1	1	1.79	1
134.07	1.90	0.002							1.80	-
134.08	1.91	0.002							1.80	-
134.09	1.92	0.002							1.81	-
134.10	1.93	0.002							1.81	-
134.11	1.94	0.002							1.82	1
134.12	1.95	0.002							1.82	-
134.13	1.96	0.002							1.83	1
134.14	1.97	0.002							1.83	1
134.15	1.98	0.002							1.83	1
134.16	1.99	0.002							1.84	7
134.17	2.00	0.002							1.84	7
134.33	2.16	0.002							1.92	7
134.34	2.17	0.002							1.92	7
134.35	2.18	0.002							1.93	
134.36	2.19	0.002							1.93	
134.37	2.20	0.002							1.93	
134.38	2.21	0.002							1.94	
134.39	2.22	0.002							1.94	
134.40	2.23	0.002							1.95	
134.41	2.24	0.002							1.95	100-Yea
134.42	2.25	0.002					ļ		1.96	_
134.43	2.26	0.002					ļ	ļ	1.96	4
134.44	2.27	0.002							1.96	4
134.45	2.28	0.002							1.97	4
134.46	2.29	0.002						ļ	1.97	4
134.47	2.30	0.002							1.98	4
134.48	2.31	0.002							1.98	4
134.49	2.32	0.002							1.99	4
134.50	2.33	0.002							1.99	4
134.51	2.34	0.002							1.99	4
134.52	2.35	0.002							2.00	-
134.53	2.36	0.002						+	2.00	-
134.54	2.37	0.002							2.01	

Notes: 1. For Orifice Flow, User is to Input an Elevation Higher than Crown of Orifice.

2. Orifice Equation: $Q = cA(2gh)^{1/2}$

3. Weir flow calculated in Bentley's FlowMaster - Trapezoidal Channel at 0.8%, 3:1 side slopes, roughness coeff. Of 0.035

4. These Computations Do Not Account for Submergence Effects Within the Pond Riser.

5. H for orifice equations is depth of water above the centroide of the orifice.

6. H for weir equations is depth of water above the weir crest.

CCO-22-0025 - Franktown - B104 Storage Calculations

Storage Requirements for Area B103

9 of 10

5-Year Storm Event

Tc (min)	l (mm/hr)	B104 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
10	104.2	35.98	17.34	18.64	11.19
15	83.6	28.86	17.34	11.52	10.36
20	70.3	24.26	17.34	6.92	8.30
25	60.9	21.03	17.34	3.69	5.53
30	53.9	18.62	17.34	1.28	2.31
35	48.5	16.76	17.34	-0.59	-1.23
40	44.2	15.26	17.34	-2.08	-5.00

Maximum Storage Required 5-Year (m³) = 11.19

100-Year Storm Event

Tc (min)	l (mm/hr)	B104 Runoff (L/s)	Allowable Outflow (L/s)	Runoff to be Stored (L/s)	Storage Required (m ³)
10	178.6	69.43	17.96	51.46	30.88
15	142.9	55.56	17.96	37.60	33.84
20	120.0	46.64	17.96	28.68	34.41
25	103.8	40.38	17.96	22.41	33.62
30	91.9	35.72	17.96	17.76	31.96
35	82.6	32.11	17.96	14.14	29.70
40	75.1	29.22	17.96	11.25	27.01

Maximum Storage Required 100-Year (m³) = 34.41

5-Year Storm Event Storage Summary

Water Elev. (m) =		134.55		_
T/G	INV. (out)	Head (m)	Depth (m)	Volume (m ³)
134.07	131.87	2.87	0.48	11.1

Storage Available (n	n³) = 11.2
Storage Required (n	n³) = 11.2

100-Year Storm Event Storage Summary

Water Elev. (m) =		134.76		_
T/G	INV. (out)	Head (m)	Depth (m)	Volume (m ³)
134.07	131.87	3.08	0.69	35.1

Storage Available (m ³) =	35.1
Storage Required (m ³) =	34.4

*Storage Calculated in AutoCAD

*Storage Calculated in AutoCAD

CCO-22-0025 - Franktown - B104 Orifce Calculations

								10	of 10	
For Orifice F	low, C=	0.60								
For Weir Flo	w, C=	1.84		Orifice 1	Orifice 2	Weir 1	Weir 2	_		
		iı	nvert elevation	131.64]		
		center of	crest elevation	131.68				1		
		orifice width	n / weir length	70 mm				1		
			orifice height				•	-		
		0	rifice area (m ²)	0.004	0.000	-				
			Floyat		a Table - Storm	Pouting				7
Elevation	Ori La Imi	Orifice 1 Orifice			We Limi		We	ir 2	Total	
124.40	2 72	0.017	n [m]	Q [m]	n [m]	of fine 1	n [m]	Q [in]	16.00	4
134.40	2.73	0.017							16.00	-
134.41	2.74	0.017							16.91	-
134.42	2.75	0.017							16.95	-
134.43	2.76	0.017							16.98	-
134.44	2.70	0.017							17.01	-
134.45	2.77	0.017							17.04	-
134.46	2.78	0.017							17.07	-
134.47	2.79	0.017							17.10	-
134.48	2.80	0.017							17.13	-
134.49	2.81	0.017							17.16	-
134.50	2.82	0.017							17.19	-
134.51	2.83	0.017							17.22	_
134.52	2.84	0.017							17.25	-
134.53	2.85	0.017							17.28	-
134.54	2.80	0.017							17.31	5-Voar
134.55	2.87	0.017							17.34	
134.50	2.88	0.017							17.37	-
134.57	2.89	0.017							17.40	-
134.50	2.90	0.017							17.43	-
134.59	2.91	0.017							17.40	-
134.60	2.92	0.017							17.49	-
134.01	2.93	0.018							17.52	-
134.02	2.94	0.018							17.55	-
134.05	2.95	0.018							17.50	-
124.04	2.90	0.018					-	-	17.01	-
134.05	2.97	0.018							17.04	-
124.00	2.90	0.010					+	+	17.0/	-1
124.07	2.99	0.018					+	+	17.70	-1
124.00	2.00	0.010					+	1	17.75	-1
124.09	2.01	0.018							17.70	-1
124.70	3.02	0.018							17.00	-
124.71	2.03	0.018							17.02	-
124.72	2.04	0.018							17.00	-
134.73	3.05	0.018							17.00	-
124.74	2.00	0.018						+	17.91	-
134.75	2.07	0.018				1	1	1	17.94	- 100-Vea
134.70	5.00	0.019				1	1		11.20	100 100

Notes: 1. For Orifice Flow, User is to Input an Elevation Higher than Crown of Orifice.

2. Orifice Equation: $Q = cA(2gh)^{1/2}$

3. Weir flow calculated in Bentley's FlowMaster - Trapezoidal Channel at 0.8%, 3:1 side slopes, roughness coeff. Of 0.035

4. These Computations Do Not Account for Submergence Effects Within the Pond Riser.

5. H for orifice equations is depth of water above the centroide of the orifice.

6. H for weir equations is depth of water above the weir crest.

CCO-22-0025 - Franktown - Runoff Calculations

Time of Concentration Pre-Development											
Drainage Area	Sheet Flow	Tc (min)	Tc (min)								
ID	Distance (m)	Land (%)	(5-Year)	(100-Year)							
A1	72	2.50	7	5							

Therefore, a Tc of 10 can be used

10 of 10

Tc= (3.26(1.1-c)L^0.5/S^0.33)

c= Blanced Runoff Coefficient

L= Length of drainage area

S= Average slope of watershed

STORM SEWER DESIGN SHEET

CCO-22-0025 PROJECT:

LOCATION: CLIENT:

347 Franktown Dr Neel Chadha

LOCATION			CONTRIBUTING AREA (ha)				RATIONAL DESIGN							SIGN FLOW					SEWER DATA								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Phace		FROM	то	CVALUE	AREA	INDIV	CUMUL	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEA	K 100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH		PIPE SIZE (mm)		SLOPE	VELOCITY	AVAIL C	.AP (5yr)
FildSe	AREA ID	МН	MH	C-VALUE	ANLA	AC	AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s	s) FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	(L/s)	(m)	DIA	w	Н	(%)	(m/s)	(L/s)	(%)
	B101	Roof	Prop 675mm	0.90	0.23	0.21	0.21	10.00	0.24	10.24	104.19	122.14	178.56	60.43				60.43	62.04	17.50	250			1.00	1.224	1.61	2.60%
		LCB1	CBMH2	0.69	0.27	0.19	0.19	10.00	0.13	10.13	104.19	122.14	178.56	54.73				54.73	100.88	10.97	300			1.00	1.383	46.15	45.74%
	B102	CBMH2	CNMH3			0.00	0.19	10.13	0.43	10.56	103.50	121.32	177.36	54.37				54.37	100.88	35.64	300			1.00	1.383	46.51	46.11%
		СВМНЗ	MH101			0.00	0.19	10.00	0.35	10.35	104.19	122.14	178.56	54.73				54.73	100.88	29.18	300			1.00	1.383	46.15	45.74%
Phase 1																											
		CB6	CB101	0.66	0.19	0.12	0.12	10.00	0.04	10.04	104.19	122.14	178.56	35.98				35.98	48.39	3.15	200			2.00	1.492	12.40	25.63%
	B104	CB101	TEE (375mm)			0.00	0.12	10.04	0.06	10.10	104.01	121.92	178.24	35.92				35.92	48.39	5.48	200			2.00	1.492	12.47	25.77%
		TEE (375mm)	MH101			0.00	0.12	10.10	0.09	10.19	103.69	121.55	177.68	35.81				35.81	182.91	9.13	375			1.00	1.604	147.10	80.42%
	B105	CB7	Prop 675mm	0.72	0.15	0.11	0.11	10.00	0.18	10.18	104.19	122.14	178.56	32.29				32.29	48.39	16.46	200			2.00	1.492	16.10	33.27%
	Phase 2	MH101	MH102	0.75	0.72	0.54	0.54																				
Phase 1, 2, 3	Phase 3	1011101	1111102	0.76	0.42	0.32	1.49	10.00	2.88	12.88	104.19	122.14	178.56	432.31				432.31	539.93	169.31	825			0.13	0.978	107.62	19.93%
	B103	CB4	LCB5	0.53	0.35	0.19	0.19	10.00	0.24	10.24	104.19	122.14	178.56	54.68				54.68	129.34	16.53	375			0.50	1.134	74.66	57.72%
	5105	LCB5	MH109			0.00	0.19	10.24	1.12	11.36	102.93	120.65	176.37	54.01				54.01	129.34	76.18	375			0.50	1.134	75.32	58.24%
	Muncipal Road	MH109	MH102	0.87	0.26	0.23	0.41																				
	Phase 4	111105	111102	0.69	0.13	0.09	0.50	10.00	1.69	11.69	104.19	122.14	178.56	146.18				146.18	148.72	92.02	450			0.25	0.906	2.54	1.71%
	Heafey Lands	MH102	MH103	0.69	1.27	0.88	2.87	10.00	1.36	11.36	104.19	122.14	178.56	832.32				832.32	842.96	89.13	975			0.13	1.094	10.64	1.26%
*A	All flow assumed to g	o upstream of M	H103 for Heafey	Lands																							
	Heafy Lands	MH108	MH103			0.00	0.00	10.00	2.07	12.07	104.19	122.14	178.56	0.00				0.00	129.34	140.68	375			0.50	1.134	129.34	100.00%
		MH103	MH104			0.00	2.87	11.36	0.22	11.57	97.53	114.29	167.03	779.07				779.07	842.96	14.20	975			0.13	1.094	63.89	7.58%
		MH104	MH105			0.00	2.87	11.57	0.48	12.06	96.55	113.14	165.34	771.28				771.28	842.96	31.79	975			0.13	1.094	71.68	8.50%
		MH105	MH106			0.00	2.87	12.06	0.45	12.51	94.44	110.66	161.70	754.44				754.44	842.96	29.35	975			0.13	1.094	88.52	10.50%
		MH106	MH107			0.00	2.87	12.51	0.64	13.14	92.59	108.48	158.49	739.61				739.61	842.96	41.79	975			0.13	1.094	103.35	12.26%
		MH107	POND			0.00	2.87	13.14	0.49	13.64	90.08	105.53	154.16	719.58				719.58	842.96	32.33	975			0.13	1.094	123.38	14.64%
]
Definitions:				Notes:				Designed:					No.					Revision							Date		
Q = 2.78CiA, where: 1. Mannir		1. Mannings coefficient (n	(n) = 0.013							1.	ISSUED FOR REVIEW 2022							2022-03-25									
Q = Peak Flow in Litres per Second (L/s)																											
A = Area in Hectares (ha)		Checked:																									
i = Rainfall intensity in millimeters per hour (mm/hr)																											
[i = 998.071 / (TC+6.0)53)^0.814]	5 YEAR																									
[i = 1174.184 / (TC+6.0	.014)^0.816]	10 YEAR						Project No.:																			
[i = 1735.688 / (TC+6.014)^0.820] 100 YEAR										Date:							Sheet No:										
																	2015	05-21							1 of 1		

McINTOSH PERRY