

P.O. Box 189 Kemptville, Ontario K0G 1J0

Civil • Geotechnical • Structural • Environmental • Hydrogeology

> (613) 860-0923 FAX: (613) 258-0475

HILAN VILLAGE

CONCEPTUAL STORMWATER MANAGEMENT PLAN

PROPOSED RESIDENTIAL SUBDIVISION 38 CARSS STREET, ALMONTE, ONTARIO

> Prepared For: Westview Projects Inc. 18 Louisa Street, Suite 180 Ottawa, Ontario K1R 6Y6

> > PROJECT #: 210864

Rev 0 – Issued for Draft Plan Approval

April 11, 2022

Professional Engineers Authorized by the Association of Professional Engineers Of Ontario to offer professional engineering services

TABLE OF CONTENTS

1	INTR	ODUCTI	ON	2
	1.1	Backg	round	2
	1.2	Summ	ary	3
	1.3	Supple	ementary Documents	3
2	STOR	MWATE	ER MANAGEMENT DESIGN CRITERIA	4
	2.1	Quanti	ty control criteria consists of the following:	4
	2.2	Quality	control criteria consists of the following	4
3	PRE-I	DEVELO	PMENT CONDITIONS	4
	3.1	Offsite	Conditions	4
	3.2	Onsite	Conditions	6
	3.3	Existin	g Drainage Patterns	7
4	POST	-DEVEL	OPMENT CONDITIONS	7
5	STOR	MWATE	ER DESIGN	9
-	5.1	Storm	water Management Model	
	5.2	OTTH	YMO Storm Analysis Variables	10
		5.2.1	Curve Numbers	11
		5.2.2	Initial Abstraction And Potential Storage	11
		5.2.3	Time of Concentration and Time to Peak	12
		5.2.4	Manning Coefficients	13
	5.3	Post-D	evelopment Quantity Control	13
		5.3.1	Runoff Rates	13
		5.3.2	Storm Sewer Design	14
		5.3.3	Accommodate Offsite Drainage	15
		5.3.4	Ensure No Negative Impact to Adjacent Lands	15
		5.3.5	Mitigate Impact of Sewer Discharge To Valley Slope	15
	5.4	Storm	water Management Quality Control	17
		5.4.1	Runoff Pollutant Source	18
		5.4.2	Source Control	18
		5.4.3	Conveyance Control	18
		5.4.4	End-of-Pipe Control	18
		5.4.5	Quality Control Summary	19
		5.4.6	Best Management Practices	19
	5.5	Storm	water System Operation and Maintenance	19
		5.5.1	Catch basin / Catch basin Maintenance hole	19
		5.5.2	CDS Treatment Unit	20
~		5.5.3	Subarains / Storm Sewer	20
6	EROS	ION AN	D SEDIMENT CONTROL	21
7	CON	CLUSION	۱۶	22

LIST OF APPENDICES

Appendix A - Storm Water Management Model Appendix B - Preliminary Storm Sewer Design Sheet

LIST OF DRAWINGS

210864 – PRE – Pre-development Conditions

210864 - Post - Post-development Conditions

210864 – GR1 – Site Grading Plan – 1

210864 – GR2 – Site Grading Plan – 2

210864 – SER-1 – Site Servicing Plan North

210864 – SER-2 – Site Servicing Plan South

1 INTRODUCTION

Kollaard Associates was retained by Westview Projects Inc. to complete a conceptual stormwater management design in support of the approval of the proposed draft plan for a residential subdivision development in the community of Almonte, Municipality of Mississippi Mills, Ontario. For the purposes of this report, Carss Street is considered to be oriented along an east west axis. The proposed residential development is located along the north side of Carss Street at the north side of the existing town of Almonte immediately east of the Mississippi River.

The proposed residential development site consists of an about 7.4 hectare parcel of land severed from an about 8.9 hectare parcel of land. The retained about 1.5 hectare parcel contains an existing single family dwelling, is accessed from Carss Street and is outside of the scope of this report. The subject site has a frontage of about 66 metres on Carss Street and extends north from Carss Street along the east side of the retained parcel for a distance of about 103 metres. The subject site extends an additional about 332 metres north from this point and occupies the entire space between the former Canadian Pacific Railway line on the east and the normal water level of the Mississippi River on the west.

Westview Projects Inc is proposing a residential development consisting of a mixture of single family dwellings, semi-detached dwellings and rowhouse development for a total of some 139 units. The proposed development will be serviced by municipal water and by municipal sanitary and storm sewers. It is understood that a pumping station will be required to facilitate the sanitary sewer.

1.1 Background

The proposed development has a total area of about 7.4 hectares and is presently unoccupied. The site has a total average depth between the former railway line and normal water level in the Mississippi River of about 203 metres. Of this depth an average of about 74 metres is occupied by the valley slope of the Mississippi River. The site has a width along the former railway line of about 435 metres resulting in a table land above the valley slope of about 5.2 hectares.

The table land above the valley slope is covered with a mixture of cultural meadow, thicket and woodland with a small portion used for agricultural purposes. The valley slope to the Mississippi River is densely treed. The Mississippi River adjacent the site has a well defined river channel contained within the river valley.

The Mississippi River is a regulated area under the jurisdiction of the Mississippi Valley Conservation Authority. As such, the first 30 metres for the site area extending east from the water's edge defined by the Ontario Land Surveyor is considered to be within a regulated setback and will be outside of any lot in the proposed development.

A geotechnical assessment was completed by Kollaard Associates Inc to verify the stability of the slope and delineate the limit of hazard lands setback at the site. The limit of hazard lands setback is intended to identify the safe setback distance from a slope for the construction of buildings or infrastructure and has been determined to correspond to 3.3 metres from the top of the slope at the site. As such, no dwellings will be located closer than 3.3 metres from the top of the slope and all development will be limited to the tableland above the slope.

There is some residential development south of Carss Street and east of the former railway. It is understood that there is a current application for a residential subdivision to be located on the remaining undeveloped land between the east side of the subject site and Mitcheson Street.

1.2 Summary

The report shall summarize the stormwater management (SWM) design requirements for the proposed development. The report will summarize the conceptual stormwater management works to be implemented at the site to address the stormwater management requirements in support of the application for draft plan of subdivision approval.

The stormwater management facility for the site will consist of system of swales, catchbasins and storm sewers which capture and convey the runoff, generated on the proposed development area and adjacent offsite areas which contribute runoff to site, to the Mississippi River. The runoff from those areas of the development which are considered sources of pollution will be treated to an enhanced level by means of hydrodynamic separators.

1.3 Supplementary Documents

The following works were also completed in support of the proposed application for draft plan of subdivision approval were referenced during the completion of the stormwater management design:

- Hilan Village Site Plan completed by Hobin Architecture Incorporated.
- Topographich Sketch of 38 Carss Street Almonte, Ontario completed by Annis, O'Sullivan, Vollebekk Ltd.
- Slope Stability Evaluation report completed by Kollaard Associates Ltd.

2 STORMWATER MANAGEMENT DESIGN CRITERIA

2.1 Quantity control criteria consists of the following:

- Due to the proximity of the site to the Mississippi River and the size of the River, there are no restrictions to the post-development runoff rate;
- The storm sewer system is to convey the runoff from a 5 year design storm under gravity flow conditions.
- The HGL during a 100 year storm is to be minimum of 0.3 metres below the underside of footing elevations of the buildings connected to the storm sewer by a storm service.
- Accommodate offsite drainage where encountered;
- Control stormwater flow so as to not affect lands adjacent to the development site;
- Ensure that the storm sewer discharge will have no negative impact to the valley slope.

2.2 Quality control criteria consists of the following:

• An enhanced level of treatment is to be provided for runoff from the site, corresponding to 80% total suspended solids removal.

3 PRE-DEVELOPMENT CONDITIONS

3.1 Offsite Conditions

As previously indicated, the site is located north of Carss Street and is in between the Mississippi River to the west and the Former Canadian Pacific Railway to the east.

The former Canadian Pacific Railway bed is currently being used as a segment of the Ottawa Valley Rail Trail. There is an existing discontinuous ditch along the west side of the former rail bed and a continuous ditch along the east side of the section of the former rail bed adjacent the site. There are three culverts crossing through the form rail bed north of Carss Street conveying runoff from the catchment areas east of the former railway towards the Mississippi River west of the site. The culverts are triangular shaped with a height of 0.53 metres and a

bottom width of 0.45 metres. The culverts are oriented with the bottom of the culvert parallel to the ground surface. The first and second culverts are located approximately 10 and 160 metres, respectively, north of the centerline of Carss Street. The third culvert is located more than 250 metres north of the north property line of the site. The runoff from both the first and second culverts is conveyed over the site to a shallow swale which begins at the second culvert and crosses into the retained parcel about 50 metres north of the centerline of Carss Street. This existing swale intersects the ditch along Carss Street about 30 metres west of the site and continues along the side of Carss Street for about 45 metres then angles across the retained parcel at about 40 degrees from the Carss Street alignment to the River.

The first culvert has an invert elevation of about 125.05 m. The second culvert has an invert elevation of about 124.68 m. The catchment area for the first and second culverts was estimated from available topographic information and site visits and extends from Carss Street to the unmaintained Lansdowne Road allowance to the north and from the former Railway to Martin Street on the East. This catchment was estimated to have an area of about 5 hectares. The ground surface elevation of this catchment varies from about 147 metres adjacent Martin Street to about 125 metres along the east side of the railway. Runoff from this catchment accumulates within the ditch along the eastside of the railway and is discharged to the subject site, first though the second culvert and then through both culverts as the ponding depth in the ditch increases.

These two culverts will act as flow restrictions during major storm events limiting the flow rate through the former railway bed to the site. Runoff in excess of the combined culvert capacity is stored in the ditch along the east side of the railway bed. The flow restriction from the culverts results in the stage storage discharge relationship indicated in Table 3-1. It is noted that overflow of the former railway bed would occur at an elevation of about 127.0 metres.

Elevation	Depth	Flow Rate	Storage
(m)	(m)	(m3/sec)	(ha.m)
125.06	0.38	0.377	0.376
125.00	0.32	0.316	0.364
124.94	0.26	0.260	0.347
124.89	0.21	0.210	0.326
124.85	0.17	0.165	0.301
124.81	0.13	0.126	0.270
124.77	0.09	0.092	0.235
124.74	0.06	0.063	0.196
124.72	0.04	0.039	0.152
124.70	0.02	0.021	0.103
124.69	0.01	0.008	0.050
124.68	0.00	0.000	0.000

Table 3-1. Former Railway Culverts - Stage, Storage, Discharge Relationship.

The catchment area for the third culvert through the former rail bed extends north from the unmaintained Lansdowne Road Allowance and from the former railway to Martin Street. Runoff from this catchment area accumulates along the east side of the railway in an unevaluated wet area before discharging through the third culvert north of the site. The catchment area for the third culvert does not impact the site or contribute runoff to the site.

There are no culverts crossing through Carss Street in proximity to the site. Runoff from areas south of Carss Street is directed west to the Mississippi River and does not impact the site.

The existing ground surface of the table land north of the subject site and west of the former railway has a general downward slope from east to west towards the Mississippi River. Runoff from the area directly north of the site is directed to the Mississippi River and does not impact the site

3.2 Onsite Conditions

As previously indicated, the site has a table land area above the valley slope of about 5.4 hectares. The table land has an average depth of about 130 metres between the east property line and the top of the valley slope. The main portion of the valley slope has a height ranging from about 24 to 28 metres and an average depth of about 74 metres resulting in an inclined downward toward the Mississippi River at an average angle which varies between 13 and 31 degrees from horizontal. The valley slope is well vegetated with a mixture of mature trees and undergrowth. The vegetation immediately above the normal water level is relatively dense. The table land is vegetated with a mixture of cultural meadow, thicket and woodland with a small portion used for agricultural purposes. There are some mown and maintained walking trails throughout the table land of the site.

Subsurface conditions on the table land vary from south to north and from east to west across the site. The subsurface conditions in the southeast portion of the site consist of silty clay with a thickness of more than 3 metres overlying bedrock. The thickness of the overburden decreases towards the top of slope to the west and towards the north end of the site. The subsurface conditions in the northeast portion of the site consist of fine sand glacial till overlying bedrock at a depth of about 1.1 metres. The subsurface conditions near the top of slope varies from silt clay over glacial till followed by bedrock at 2.1 metres below the ground surface at the south end of the site to a thin layer of glacial till or silty clay over bedrock at a depth of about 0.5 metres below grade at the north end of the site.

The tableland above the valley slope has an overall general slope from the east side of the site to the top of the valley slope. There is a local flow divide which extends diagonally downward from the unmaintained Lansdowne Road allowance towards the top of the slope at the southwest corner of the site. There is a shallow gully which extends into the tableland from the top of slope at about the midpoint of the site. There is a shallow swale which extends down the valley slope from the gully to the Mississippi River. The ground surface of the tableland in

the vicinity of the gully gradually slopes upward away from the gully towards the flow divide located south and east of the gully. The ground surface slopes upwards to the north from the top of the gully to about the northern quarter of the site.

3.3 Existing Drainage Patterns

As previously indicated, there is a swale which crosses the southern portion of the site that conveys runoff originating east of the site to the Mississippi River. Runoff generated onsite east of the swale and south of the flow divide is also conveyed by the swale to the Mississippi River.

Other than the existing swale, there is little evidence of concentrated flow on the valley slope south of the flow divide.

Runoff from the table land north of the flow divide is directed by sheet flow west to the top of the valley slope and northwest into the shallow gully at about the midpoint of the site. Runoff from the tableland immediately north of the gully is also directed towards the gully and the top of the valley slope. There is some concentrated flow on the valley slope as a result of the discharge from the gully which is conveyed by means of the shallow swale to the Mississippi River.

The runoff from the tableland at the north end of the site is conveyed by sheet flow to the valley slope of the Mississippi River. There is little evidence of concentrated flow on the valley slope at the north end of the site.

4 POST-DEVELOPMENT CONDITIONS

The proposed development will consist of a mixture of single family dwellings, semi-detached dwellings and rowhouse development. A entrance street (Street 1) will extend, parallel to the former railway, from Carss Street to the north end of the site. Two crescents (Street 2 and Street 3) will extend towards the top of the valley slope from Street 1. The first Crescent, Street 1, will contain about 13 units inside the crescent and a total of about 9 units along the south and west side of the crescent. The north side of the first crescent will be adjacent a park block. The second crescent will begin immediately north of the park block and will contain about 16 units inside the crescent. There will be a total of about 13 units along the west and north sides of the crescent.

The proposed development will contain two additional park blocks. The first park block (Park Block 1) will be located at Carss Street between the east side of Street 1 and the former railway and will extend about 37 meters north from Carss Street. The second park block (Park Block 2)

will be located at the southwest corner of the intersection of Street 2 and Street 1. The proposed property line along the south side of this park block will be in line with the north property line of the retained parcel.

The park block between the two crescents (Park Block 3) will extend from Street 1 to the rear or west property line of the units constructed along the top of the slope. A channel will be constructed in the table land of the park block. The constructed channel will begin adjacent the southwest corner of Street 3 and continue along the west side of the park block to the existing swale which begins in the above mentioned gully at the top of the slope. The existing natural swale will then continue down the valley slope to the Mississippi River. The first portion of the channel will constructed with flow and erosion control measures to prevent erosion of the side slopes and bottom of the water course. Additional large angular stone will be added at select locations along the side slopes of the existing swale to mitigate any potential for erosion due to increased runoff from the development.

Runoff from catchment area CA-5, which consists of the back half of the proposed units along the east side of Street 1 north of the Lansdowne Road allowance and the offsite area between the proposed development and the Pathway along the former railway north of the Lansdowne Road allowance, will be captured by a storm sewer which will be placed in a drainage easement along the rear of the lots within catchment CA-5. This storm sewer will discharge into the storm sewer along south section of Street 3.

Runoff from catchment area CA-4, which consists of front half of the proposed units along the east side of Street 1 north of the Lansdowne Road allowance, the front of the units along the north and south sides of Street 3 and the units inside the second crescent, will be collected by means of storm sewer extended along Street 3. This storm sewer will outlet to the proposed channel within Park Block 3 at the southwest corner of Street 3.

Runoff from catchment area CA-1a, which consists of the offsite area east the former railway and south of the Lansdowne Road allowance, and runoff from catchment area CA-1b, which consists of the offsite area between the development and the railway south of the Lansdowne Road Allowance and the rear of the units along the East side of Street 1 south of the Lansdowne Road allowance, will be collected by means of a storm sewer in an easement along the rear of the lots within catchment CA-1b. This storm sewer will be connected to the storm sewer within the street adjacent the south property line of Park Block 2.

Runoff from catchment area CA-2, which consists of the front half of the units along both sides of Street 1 south of Park Block 3, will be collected by means of a storm sewer along the south part of Street 1. This storm sewer will be combined the storm sewer conveying the runoff from catchments CA-1a and CA-1b adjacent the south side of Park Block 2. This storm sewer system will be extended along the south side of Park Block 2 and along an easement contained within the rear of the units abutting the retained parcel.

Runoff from catchment area CA-3 ,which consists of the front half of the units east of Park Block 3, the units within the first crescent and the front half of the units along the south and west sides of the Street 2, will be collected by means of a storm sewer along Street 2. This storm sewer will outlet to Park Block 3 at the northwest corner of Street 2. The discharge from this outlet will be directed to the proposed channel in Park Block 3.

The catchment area properties are summarized in Table 4-1.

Catchment	Area	Location	С	CN	Percent	Time to	Average
Label					Impervious	Peak	Catchment
							Slope
	ha				%	hr	%
CA-1a	4.99	offsite (clean)	0.32	81	11	0.37	10 - 24
Ca-1b	0.72	offsite and	0.44	85	30	0.17	2 - 6
		onsite (clean)					
CA-2	0.74	onsite (streets)	0.62	N/A	58	0.17	2 - 6
CA-3	0.97	onsite (streets)	0.61	N/A	56	0.17	3 - 5
CA-4	1.59	onsite (streets)	0.64	N/A	60	0.17	2 - 4
CA-5	0.63	offsite and	0.32	81	11	0.17	2 - 7
		onsite (clean)					

Table 4-1 – Post-Development Catchment Area Characteristics

5 STORMWATER DESIGN

5.1 Stormwater Management Model

The hydrologic modeling software, Visual OTTHYMO (V2.6.3) was used to assess the postdevelopment storm water flows at the site.

The post-development conditions for the catchment areas having an impervious ratio of less than 20 percent were also calculated using the NASHHYD watershed command. The post-development conditions for the catchment areas having an impervious ratio of more than 20 percent were calculated using the STANDHYD watershed command.

Rainfall data from Intensity-Duration-Frequency curves obtained from the Ottawa International Airport as provided in the City of Ottawa Sewer Design Guidelines were utilized to model the Chicago storm events at the site.

The IDF formulae utilized are as follows: 100 year Intensity = $1735.688 / (Time in min + 6.014)^{0.820}$

10 year Intensity	$= 1174.184 / (Time in min + 6.014)^{0.816}$
5 year Intensity	= 998.071 / (Time in min + 6.053) ^{0.814}
2 year Intensity	= 732.951 / (Time in min + 6.199) ^{0.810}

The rainfall data used in the SCS Type II storm distribution was obtained from the Ministry of Transportation IDF Curve Lookup Site for Almonte.

The post-development conditions were modeled to determine the flow rates in the storm sewers utilizing SCS Type II Storm Distributions and Chicago storm distributions of various duration and magnitude. The historical design storms from July 1, 1979 and August 4, 1988 were also considered.

The resulting model contain the storm events as follows:

Simulation Number 1 - 25mm 4 hour Chicago Simulation Number 2 - 12 hour 2 year Chicago Simulation Number 3 - 12 hour 5 year Chicago Simulation Number 4 - 12 hour 10 year Chicago Simulation Number 5 - 12 hour 100 year Chicago Simulation Number 6 - 24 hour 100 year Chicago Simulation Number 7 - 12 hour 5 year SCS Type II Simulation Number 8 - 12 hour 100 year SCS Type II Simulation Number 9 - Historical Aug 4 1988 Simulation Number 10 - Historical July 1 1979

5.2 OTTHYMO Storm Analysis Variables

The NASHYD command uses the following inputs: DT – Simulation time step increment (min) – must be shorter than TP Area – Watershed or catchment area (hectares) DWF – A constant Dry Weather Flow or Baseflow (m3/s) assumed to be 0 (doesn't change from pre to post development) CN – SCS Modified Curve Number IA – Initial Abstraction (mm)

N – Number of Linear reservoir used for derivation of the Nash Unit Hydrograph (generally 3)

TP – Unit hydrograph time to peak (hr)

The STANDHYD command uses the following inputs:

- DT Simulation time step increment (min) must be shorter than TP
- Area Watershed or catchment area (hectares)

DWF – A constant Dry Weather Flow or Baseflow (m3/s) assumed to be 0 (doesn't change from pre to post development)

- XIMP Directly connected imperviousness (ratio of area which is impervious and directly connected to the storm sewer or discharge point
- TIMP Total impervious area (ratio of total impervious area to total catchment area)
- LOSS Loss method (Horton Infiltration Equation)
 - $f = f_c + (f_0 f_c)e^{-k(t)}$
 - f = infiltration rate at time t (mm/hr)
 - f_c = final infiltration rate = 13.2 mm/hr
 - f₀ = initital infiltration rate = 76.2 mm/hr
 - $k = decay coefficient (t^{-1}) = 0.00115s^{-1}$
- SLPP Pervious area ground slope
- LGP Length of flow over pervious area
- MNP manning's roughness coefficient for sheet flow over pervious area
- SCP Pervious area storage coefficient (set to allow program to calculate)
- DPSI Available impervious area depression storage
- SLPI Impervious area ground slope
- LGI Flow length of impervious area
- MNI Manning's Roughness coefficient for impervious area (channel flow)
- SCI Impervious area storage coefficient (set to allow program to calculate)

5.2.1 Curve Numbers

The NasHyd hydrograph method which uses the SCS loss method for pervious areas. Runoff Curve Numbers (CN) are utilized in the SCS hydrology method. The Curve Number is a function of soil type, ground cover, and antecedent moisture conditions. The soil type was chosen to be Group C, considering the subsurface conditions encountered at the site. For the purposes of analysis presented in this report, the pervious surfaces were considered to have a runoff coefficient of CN = 79 and Impervious of CN =98. The CN values were taken from the United States Department of Agriculture Urban Hydrology for Small Watersheds Technical Release 55 (USDA TR55).

5.2.2 Initial Abstraction And Potential Storage

The initial abstraction includes all losses before runoff begins, and includes water retained in surface depressions, water taken up by vegetation, evaporation, and infiltration. This value is related to characteristics of the soil and the soil cover. Initial abstraction is a function of the potential storage and considered to be equal to 0.15 S where S is the potential storage. The potential storage S is related to the runoff coefficient as follows:

S = (25400/CN) - 254

5.2.3 Time of Concentration and Time to Peak

The time to peak is typically considered to be 2/3rds of the time of concentration of a catchment area. The time of concentration of each catchment was determined using the Velocity method. The velocity method assumes that the time of concentration is the sum of travel times for segments along the hydraulically most distant flow path. The segments used in the velocity method may be of three types: sheet flow T_s, shallow concentrated flow T_{sc}, and open channel flow T_c. The open channel flow was modelled using the route Channel Command in OTTHYMO.

Example calculation of time of Concentration for CA-1a:

The Manning's roughness coefficient for sheet flow for the offsite tree covered area was taken as n = 0.42.

$$T_s = \frac{0.091(nl)^{0.8}}{(P_2)^{0.5}S^{0.4}}$$

Where $T_s = travel time, h$

n = Manning's roughness coefficient sheet flow = 0.42

- I = sheet flow length, 30 m
- $P_2 = 2$ -year 24-hour rainfall, = 49.21 mm
- S = Slope of land surface m/m = 0.02
- $T_s = 0.46$ hours

Shallow concentrated flow was assumed to occur after a maximum of 30 metres on each catchment.

Travel time for shallow concentrated flow for the offsite Catchment CA-1a was divided into two sections due to the significant change in the overall slope of the land. The first section of the offsite catchment has an average slope of about 10 percent, the second section has an average slope of about 24 percent.

The flow velocity used to calculate the time of travel for shallow concentrated flow was determined using Table 15-3 of Chapter 15 of the USDA handbook. This table can be used to calculate the velocity when the slope and ground cover are known. The ground cover used in reading Table 15-3 for catchment CA-1a was considered to be woodland. From Table 15-3 of the USDA Handbook using a slope of 10%, the flow velocity for the first section was determined to be = 1.5 ft/s or 0.46 m/s. The flow velocity for the second section at 24 percent was determined to be 2.5 ft/s or 0.76 m/s. The distance of shallow concentrated flow was the distance between the point at which sheet flow ended and open channel flow begins or the

end of the site. The open channels are considered to be either the road side ditches or the existing water courses.

$$T_{sc} = \frac{l}{3600 V}$$

Where

 $T_{sc} = travel time, h$ I = distance of shallow concentrated flow: Section 1 = 86 m Section 2 = 130 m $T_{sc} = 0.05 + 0.05 = 0.10 hrs$

The total time of concentration for catchment CA-1a was calculated to be equal to

Tt = 0.46 + 0.10 = 0.56 hrs.

The time to peak for CA-1a is therefore equal to $0.56 \times 2/3 = 0.37$ hrs = 22 mins.

The time to peak of the remaining catchments was determined to be 10 minutes or 0.17 hrs as this is the minimum time to peak recommended to be used in analysis in order to avoid over estimating the peak flows.

5.2.4 Manning Coefficients

The post-development catchment areas of the proposed development having an impervious ratio above 30 percent were modeled using the StandHyd hydrograph method. The model uses two parallel standard instantaneous unit hydrographs to convolute (or combine by running the two IUH simultaneously) the effective rainfall intensity over the pervious and impervious surfaces. The losses over the impervious surfaces were calculated using the Horton infiltration equation.

The Manning Roughness (n) Coefficients for overland flow selected for impervious site areas was assumed to be 0.013 based on the CofO Guidelines: Appendix 6-C Manning Coefficient values for street and gutter flow assuming weathered asphalt.

The Manning's roughness coefficient for pervious surfaces (MNP) was selected to be 0.30 based on sheet flow through good quality grass in the previous areas.

5.3 Post-Development Quantity Control

5.3.1 Runoff Rates

Table 5-1 summarizes the peak flow rate for each return period assess at various locations adjacent to and within the site. Detailed results of the stormwater model are provided in Appendix A. The flow restriction for the runoff generated on the CA-1a catchment area

resulting from the culverts through the former railway was modelled using a reservoir routine with the stage storage relationship shown in Table 3-1.

Flow Path	2 Storm	5 Storm	10 Storm	100 Storm
	Event	Event	Event	Event
	Peak Flow	Peak Flow	Peak Flow	Peak Flow
	m ³ /sec	m ³ /sec	m ³ /sec	m ³ /sec
Railway Culverts	0.061	0.108	0.136	0.227
Rearyard Sewer	0.068	0.119	0.149	0.247
Street 1 Sewers (south end)	0.086	0.138	0.176	0.303
South Treatment Unit and	0.108	0.185	0.241	0.464
Outlet				
Rear yard Sewers	0.018	0.035	0.047	0.105
South section of Street 3				
storm sewers				
Street 3 storm sewers	0.180	0.304	0.392	0.621
North Treatment Unit	0.190	0.328	0.427	0.706
Street 2 storm sewers and	0.104	0.175	0.228	0.378
middle Treatment Unit				
Lower section of Channel	0.295	0.504	0.656	1.085
	Flow Path Flow Path Railway Culverts Rearyard Sewer Street 1 Sewers (south end) South Treatment Unit and Outlet Rear yard Sewers South section of Street 3 storm sewers Street 3 storm sewers North Treatment Unit Street 2 storm sewers and middle Treatment Unit Lower section of Channel	Flow Path2 Storm EventFlow PathEventPeak Flowm³/secRailway Culverts0.061Rearyard Sewer0.068Street 1 Sewers (south end)0.086South Treatment Unit and Outlet0.108South Sewers0.018South section of Street 3 storm sewers0.180Street 3 storm sewers0.180North Treatment Unit0.104Morth Treatment Unit0.104Street 2 storm sewers and middle Treatment Unit0.295	Flow Path2 Storm5 StormEventEventEventPeak FlowPeak FlowPeak Flow0.0610.108Railway Culverts0.0610.108Rearyard Sewer0.0680.119Street 1 Sewers (south end)0.0860.138South Treatment Unit and Outlet0.1080.185Rear yard Sewers South section of Street 3 storm sewers0.0180.035Street 3 storm sewers0.1800.304North Treatment Unit0.1900.328Street 2 storm sewers and middle Treatment Unit0.1040.175Lower section of Channel0.2950.504	Flow Path2 Storm5 Storm10 StormEventEventEventEventEventPeak FlowPeak FlowPeak FlowPeak FlowPeak Flowm³/secm³/secm³/secm³/secm³/secRailway Culverts0.0610.1080.1360.136Rearyard Sewer0.0680.1190.149Street 1 Sewers (south end)0.0860.1380.176South Treatment Unit and Outlet0.1080.1850.241Rear yard Sewers South section of Street 3 storm sewers0.0180.03040.392Street 3 storm sewers0.1800.3040.392North Treatment Unit0.1900.3280.427Street 2 storm sewers and middle Treatment Unit0.2950.5040.656

Table 5-1 Summary of Peak Flows

5.3.2 Storm Sewer Design

In keeping with the previously provided criteria, the storm sewer has been designed to convey the above design flows during a 100 year storm event with a HGL a minimum of 0.3 m below the underside of footing of the buildings connected to the storm sewer by a storm service. For the purposes of the draft plan design submission, the design flows were calculated for the each catchment area to determine a maximum flow within the storm sewers rather than determining the design flow in each specific storm sewer section.

In order to ensure that the 100 year HGL did not exceed the allowable elevations, the size of the storm sewers have been increased to ensure gravity flow during the 100 year event where the sewers will be connected to storm services. As a result, the criteria with respect to

maintaining gravity flow in the storm sewers during a 5 year storm event is also met. The preliminary storm sewer design sheet is included in Appendix B.

5.3.3 Accommodate Offsite Drainage

As previously indicated, the anticipated runoff from the offsite catchment area has included in the OTTHYMO stormwater management model. The existing culverts through the former railway bed limit the flow rate during major storm events. The discharge from these culverts will be captured by means of appropriately placed ditch inlet catch basins and will be conveyed through the storm sewer system to the Mississippi River.

5.3.4 Ensure No Negative Impact to Adjacent Lands

The existing drainage pattern is in general from east to west. As such there is no significant contribution of runoff from the site along the north property line of the site to the adjacent land or from the adjacent land to the site. A shallow swale will be located in the rear yards of the dwellings along the north property line of the development. This swale will direct any runoff from the rear yards to the Mississippi River.

The rear yards of the proposed dwellings along the east side of the Retained parcel will result in some runoff being directed west towards the Retained parcel. This runoff will be intersected by a swale adjacent the rear property line. The swale will discharge to the existing swale which currently conveys the runoff from the catchment area east of the former railway. The runoff from the rear yards of the lots in question will be much less than the runoff currently being conveyed. As such, the runoff directed offsite onto the retained parcel following the completion of the development will be much less than current conditions and will have no negative impact to the adjacent lands.

5.3.5 Mitigate Impact of Sewer Discharge To Valley Slope

Discharge from the storm sewers will be directed to the valley slope at two locations. The first location is along the rear of the lots adjacent the retained parcel of land. The second location is along the north side of Park Block 3. The discharge from the storm sewers will be conveyed to the Mississippi River by means of constructed open channels.

The open channels will be constructed with a bottom width ranging from 0.5 to 1.0 metres and will have side slopes ranging from 3H:1V to 2H:1V. The bottoms of the open channels will consist of bedrock or of a coarse gravel and geotextile liner protected by large size riprap. The side slopes of the open channel will be protected by a geotextile liner and large size riprap. The riprap will be placed to ensure that the individual pieces of riprap are protected from horizontal

displacement by interlocking with the adjacent riprap. The channels will be designed to resist erosion resulting from the flows generated during a 100 year storm event.

The existing slope along the first channel path ranges from about 10 to 40 percent and has a length of about 85 metres. The proposed storm sewer will discharge onto the slope about 83 metres from the normal water level. The lower about 55 metres of the slope is inclined at about 12 to 32 percent. The remaining about 28 metres is inclined at about 35 to 40 percent. The first channel is expected to convey the discharge from the combined catchment areas of CA-1a, CA-1b and CA-2. During a 100 year storm event, the peak flow rate will be 0.464 m³/sec.

A flow rate of 0.464 m^3 /sec will result in flow velocity of about 1.8 m/sec (5.9 ft/s) and a flow depth of about 0.26 m in a channel with a bottom width of 0.5 metres, side slopes of 2H:1V and a bottom slope of 40%. A bottom slope of 32 percent will decrease the flow velocity to about 1.6 m/sec and increase the flow depth to about 0.27 m.

The existing slope along the second channel path ranges from about 26 to 47 percent and has a length of about 67 metres. The proposed storm sewer will discharge into the channel on the tableland about 35 metres from the top of slope. As previously indicated, the upper part of this channel will be constructed. The constructed channel will intersect the existing swale at the top of bank. The lower about 21 metres of the slope is inclined at about 26 to 47 percent. The remaining about 46 metres is inclined at about 35 to 40 percent. The slope of the table land above the top of slope ranges from about 1 to 8 percent. The second channel is expected to convey the discharge from the combined catchment areas of CA-3, CA-4 and CA-5. During a 100 year storm event, the peak flow rate will be $1.085 \text{ m}^3/\text{sec.}$

A flow rate of 1.085 m^3 /sec will result in flow velocity of about 2.4 m/sec (7.9 ft/s) and a flow depth of about 0.37 m in a channel with a bottom width of 0.5 metres, side slopes of 2H:1V and a bottom slope of 47%. A bottom slope of 35 percent will decrease the flow velocity to about 2.1 m/sec and increase the flow depth to about 0.4 m.

The Design relationship between flow velocity and median riprap particle size is presented as follows:

$$\begin{split} \mathbf{D}_{50} &= 0.005\ 94\ \mathbf{V_a}^3 \,/\, (\mathbf{d_{avg}}^{0.5}\ \mathbf{K_1}^{1.5}) \qquad (\mathbf{D}_{50} &= 0.001\ \mathbf{V_a}^3 \,/\, (\mathbf{d_{avg}}^{0.5}\ \mathbf{K_1}^{1.5}) \,) \qquad (7.36) \end{split}$$
 $\begin{aligned} &\text{Where: } \mathbf{D}_{50} &= \ \text{the median riprap particle size, m (ft)} \\ &C &= \ \text{correction factor (described below)} \\ &V_a &= \ \text{the average velocity in the main channel, m/s (ft/s)} \\ &d_{avg} &= \ \text{the average flow depth in the main flow channel, m (ft)} \\ &K_1 \ \text{is defined as:} \\ &K_1 &= \left[\mathbf{1} - (\sin^2 \theta / \sin^2 \Phi)\right]^{0.5} \end{aligned}$ $\end{aligned}$ $\begin{aligned} &\text{Where: } \theta &= \ \text{the bank angle with the horizontal} \\ &\Phi &= \ \text{the riprap material's angle of repose} \end{aligned}$

The average flow depth and velocity used in Equation 7.36 are main channel values. The main channel is defined as the area between the channel banks (see Figure 7-24 below).

Using the above equations, a flow velocity of 1.8 m/sec with a flow depth of 0.26 m results in a median riprap particle size D50 of 275 mm. Expected individual pieces of riprap placed will range in mass from about 15 to 50 kg.

Using the above equations, a flow velocity of 2.4 m/sec with a flow depth of 0.37 m results in a median riprap particle size D50 of 308 mm. Expected individual pieces of riprap placed will range in mass from about 15 to 100 kg.

5.4 Stormwater Management Quality Control

Quality control criteria consists of the following:

• An enhanced level of treatment is to be provided for runoff from the site, corresponding to 80% total suspended solids removal.

As indicated in the Stormwater Management Planning and Design Manual published by the Ontario Ministry of the Environment (The MOE Manual), the recommended strategy for stormwater management is to provide an integrated treatment train approach to water management. In general, best management practices for stormwater management quality control are divided into three categories: source control, conveyance control and end-of-pipe control.

5.4.1 Runoff Pollutant Source

The primary source of total suspended solids and associated runoff pollution under postdevelopment conditions in a residential subdivision is considered to be the areas of a site subject to vehicle traffic. At the proposed development, this consists of the driveways and roadways. In general, vegetated landscaped areas and roof areas are not considered to be a major source of runoff pollution following the completion of the development and establishment of the vegetation in the landscaped areas.

5.4.2 Source Control

The application of de-icing chemicals including salts and sand can be reduced with a best management plan for the application of these products. BMPs with respect to de-icing chemicals include such measures as timing of application, targeted application, and clearing of snow cover before application.

5.4.3 Conveyance Control

The majority of the runoff from the driveways and roadways will be conveyed by the proposed storm sewer system. Coarse grained suspended solids such as coarse sand and fine gravel will settle within the sumps of the catch basins and maintenance holes prior to entering the storm sewers. There is little other significant benefit in terms of quality control within the conveyance system provided by the proposed storm sewers.

5.4.4 End-of-Pipe Control

The stormwater treatment to meet the quality control requirement will be provided by the use of hydrodynamic vortex separators such as the Continuous Deflective System (CDS) by Contech Engineered Solutions. There will be a total of three of the treatment units provided on the site. The treatment units will be located as shown on Kollaard Associates drawing 210864# . The treatment units will be sized to ensure a minimum of 80 percent total suspended solid removal using a fine particle size distribution. In addition, each treatment unit will be sized to ensure that it has sufficient treatment capacity to treat 100 percent of the water quality control flow from the contributing area without bypass. The water quality flow rate as specified by the MOE Manual is determined by the 25 mm 4 hour Chicago storm event.

The first treatment unit is intended to provide treatment for the combined catchment areas of CA-1a, CA-1b and CA-2. The water quality flow rate for this catchment area is 21 L/sec.

The second treatment unit is intended to provide treatment for the catchment area of CA-3. The water quality flow rate for this catchment area is 47 L/sec.

The third treatment unit is intended to provide treatment for the combined catchment areas of CA-4 and CA-5. The water quality flow rate for this catchment area is 81 L/sec.

The CDS technology uses a combination of swirl concentration and indirect screening to screen, separate and trap debris, sediment, and hydrocarbons from stormwater runoff.

5.4.5 Quality Control Summary

Based on the above information, quality control to an enhanced level will be achieved as follows:

- Potential pollutants will be reduced at the source by best management practises.
- Coarse Pollutants will be partially removed by sedimentation within the catch basin and maintenance hole sumps.
- Stormwater treatment to 80 percent total suspended solids removal will be provided by Hydrodynamic vortex separators such as the CDS treatment unit designed to treat 100 percent of the flow generated during a quality control storm event.

5.4.6 Best Management Practices

Best Management Practices shall be implemented during and following construction as follows to reduce transport of sediments.

- Construction works are to be timed in order to reduce the length of time between the beginning of construction and the establishment of vegetative cover.
- Keep sediment and erosion control measures in place and maintained during and following construction until vegetation is established.
- Do not disturb vegetated areas outside of the development foot print.
- Use appropriate equipment for the development to reduce the duration of the development.
- Work should be timed to avoid the wet seasons of the year.
- Roof runoff should be discharged onto the ground surface and directed to the grass surfaced swales.
- Winter snow removal, together with salting and sanding should completed in accordance with an established plan and best management practices to reduce the amount of sand and salt required.

5.5 Stormwater System Operation and Maintenance

5.5.1 Catch basin / Catch basin Maintenance hole

The catch basins and maintenance holes should be cleaned with a Hydrovac excavation truck following completion of construction, paving of the asphaltic concrete surface and establishment of adequate grass cover on the landscaped areas.

Following the initial cleaning these structures should be inspected on a semi-annual basis and following major storm events. Any blockages, trash or debris should be removed. Once the sediment accumulation in the catch basin and/or maintenance hole has reached a level equal to 0.2 metres below the outlet invert of the structure, the sediment should be removed by hydro excavation.

5.5.2 CDS Treatment Unit

The CDS hydrodynamic separators should be inspected and cleaned in accordance with the manufacturers recommendations. At minimum: Inspection:

- The treatment unit should be inspected at regular intervals. At minimum inspections should be performed twice per year.
- Inspections should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen.
- Inspections should also quantify the accumulation of hydrocarbons, trash and sediment in the system.

Maintenance:

• The CDS system should be cleaned when the level of sediment has reached 75% of capacity or when an appreciable level of hydrocarbons and trash have accumulated.

5.5.3 Subdrains / Storm Sewer

Subdrains and storm sewer should be cleaned by flushing in combination with a hydrovac excavation truck following completion of the construction. Following the initial cleaning the storm sewers should be inspected on a semi-annual basis and following major storm events for accumulated sediment until there are sufficient records to develop a maintenance schedule.

Any accumulated sediment, blockages, trash or debris should be removed by means of flushing in combination with hydro excavation at the downstream end.

6 EROSION AND SEDIMENT CONTROL

The developer (and/or contractor) agrees to implement an erosion and sediment control plan at least equal to the stated minimum requirements and to the satisfaction of the Township of Mississippi Mills, appropriate to the site conditions, prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and during all phases of site preparation and construction in accordance with the current best management practices for erosion and sediment control. It is considered to be the developers and/or contractors responsibility to ensure that the erosion control measures are implemented and maintained.

In order to limit the amount of sediment carried in stormwater runoff from the site during construction, it is recommended to install a silt fence along the west side of the development adjacent the top of slope. The silt fence may be polypropylene, nylon, and polyester or ethylene yarn.

If a standard filter fabric is used, it must be backed by a wire fence supported on posts not over 2.0 m apart. Extra strength filter fabric may be used without a wire fence backing if posts are not over 1.0 m apart. Fabric joints should be lapped at least 150 mm (6") and stapled. The bottom edge of the filter fabric should be anchored in a 300 mm (1 ft) deep trench, to prevent flow under the fence. Sections of fence should be cleaned, if blocked with sediment and replaced if torn.

Straw bale flow check dams (OPSD 219.180) should be installed across any natural swale at the top of the slope and across any constructed channel. The straw bale check dam should be maintained until vegetation is well established.

A mud mat or track out plate should be installed at the site construction access point to reduce the transport of sediment from the site to the street. The streets should be kept clean of mud and sediment.

The proposed landscaping works should be completed as soon as possible. The proposed granular and asphaltic concrete surfaced areas should be surfaced as soon as possible.

The silt fences should only be removed once the site is stabilized and landscaping is completed. These measures will reduce the amount of sediment carried from the site during storm events that may occur during construction.

7 CONCLUSIONS

This report addresses stormwater management (SWM) design requirements and proposed works that will address stormwater flows arising from the site under post-development conditions for the proposed residential subdivision. Based on the analysis provided in this report, the conclusions are as follows:

- Due to the proximity of the site to the Mississippi River and the size of the River, there are no restrictions to the post-development runoff rate.
- The storm sewer system will convey the runoff from a 5 year design storm under gravity flow conditions and the HGL during a 100 year storm will be minimum of 0.3 metres below the underside of footing elevations of the buildings connected to the storm sewer by a storm service.
- The storm water management facility has been designed to accommodate offsite drainage where encountered and to ensure that stormwater flows will affect lands adjacent to the development site.
- The stormwater channels receiving the discharge from the storm sewers have been designed to ensure that there will be no negative impact to the river valley slope.
- Stormwater treatment will be provided an enhanced level by means of CDS hydrodynamic separator units.
- During all construction activities, erosion and sedimentation shall be controlled.

We trust that this report provides sufficient information for your present purposes. If you have any questions concerning this report or if we can be of any further assistance to you on this project, please do not hesitate to contact our office.

Sincerely, Kollaard Associates, Inc.

Steven deWit, P.Eng.

APPENDICES

Appendix A - Storm Water Management Model

Appendix B - Preliminary Storm Sewer Design Sheet

Appendix A – Storm Water Management Model

OTTHYMO Model Schematic

Schematic Summary Table

Detailed Report For Stormwater Management Model

OTTHYMO Model Schematic

Schematic Summary Table

Hydrograph No.	Model Type	Item Represented	Comment
1	NASHYD	Sub-Catchment CA-1a	Catchment representing offsite catchment Area East of CP Rail Trail
6	NASHYD	Sub-Catchment CA-1b	Catchment representing rear yards and offsite catchment area west of Trail for south portion of development
2	STANDHYD	Sub-Catchment CA-2	Catchment representing the south portion of the development discharging through Park Block 2
3	STANDHYD	Sub-Catchment CA-3	Catchment representing the portion of the development within the Street 2 Crescent
4	STANDHYD	Sub-Catchment CA-4	Catchment representing the portion of the development within the Street 3 Crescent
5	NASHYD	Sub-Catchment CA-5	Catchment representing rear yards and offsite catchment area west of Trail for north portion of development
11	Reservoir	Ponding Upstream of Trail Culvert	Represents the flow restriction for the off- site catchment area east of the Trail and storage resulting from the culvert under the Trial
7,8,9,10	ADD-HYD	Add Hydrograph	Link used to add two hydrographs in the routing

				Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario				
Project # 210864		1	of 50			Apr	il 11, 2022	
VVI VVI VVI VVI VVI	SSSSS U SS U SS U SS U SSSSS UUU	U A U A A U AAAAA U A A U A A	L L A L A L A LLLLI					
000 TTTTT 7 0 0 T 0 0 T	TTTT H T H T H T H	H Y Y H YY H Y	MMMN MMMN MN					
000 1	I H	H I	MN	1 000				
* * *	*** ריד די די	יאדד הי		י די סייי	****			
	DEI	AILE						

** SIMULATION NUMBE *************************	R: 1 ** ****							
READ STORM	Filenam	e: G:\Pro 210864 \Storm	ojects\2 ł – West n and S€	2021\ zview Pro	ojects In .an\Desig	.c 38 n Storm	Carss St Text Fil	
Ptotal= 25.00 mm	Comment	s: twenty	five mn	n 4 hr ch	icago st	orm	10110 111	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	
.17	2.07	1.17	5.70	2.17	5.19	3.17	2.80	
.33	2.27	1 50	50 21	2.33	3 95	3.33	2.02	
. 50	2.88	1.67	13.37	2.67	3.56	3.67	2.35	
.83	3.38	1.83	8.29	2.83	3.25	3.83	2.23	
1.00	4.18	2.00	6.30	3.00	3.01	4.00	2.14	
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area Total Im	(ha)= np(%)= 58	.74 3.00 I	Dir. Conr	n.(%)= 4	5.00		
	I	MPERVIOUS	3 PEF	RVIOUS (i	.)			
Surface Area	(ha)=	.43		.31				
Dep. Storage	(mm) =	1.57		4.67				
Average Slope	(%)=	3.00	,	2.00				
Length	(m) =	70.20	2	20.00				
Mannings n	=	.013		.300				
NOTE: RAINFZ	ALL WAS TR	ANSFORMED) ТО 5	5.0 MIN.	TIME STE	Ρ.		
		TRAN	ISFORMEI) HYETOGE	APH			
TIME	rain	TIME	RAIN	TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	
.083	2.07	1.083	5.70	2.083	5.19	3.08	2.80	
.167	2.07	1.167	5.70	2.167	5.19	3.17	2.80	
.250	2.27	1.250	10.78	2.250	4.47	3.25	2.62	
.333	2.27	1.333	10.78	2.333	4.47	3.33	2.62	
.417	2.52	1.417	50.21	2.417	3.95	3.42	2.48	

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario

Project # 210864	2 of 50	April 11, 2022
.500 2.5 .583 2.8 .667 2.8 .750 3.3 .833 3.3 .917 4.1 1.000 4.1	2 1.500 50.21 2.500 8 1.583 13.37 2.583 8 1.667 13.37 2.667 8 1.750 8.29 2.750 8 1.833 8.29 2.833 7 1.917 6.30 2.917 8 2.000 6.29 3.000	3.953.502.483.563.582.353.563.672.353.253.752.233.253.832.233.013.922.143.014.002.14
<pre>Max.Eff.Inten.(mm/hr)=</pre>	50.21 .00 5.00 145.00 1.96 (ii) 144.39 (ii) 5.00 145.00 .31 .01 .05 .00 1.50 .00 23.43 .00 25.00 25.00 .94 .00 . IS SMALLER THAN TIME STEP! AREA HAS NO FLOW	*TOTALS* .046 (iii) 1.50 10.54 25.00 .42
<pre>(i) HORTONS EQUATION Fo (mm/hr)= 76 Fc (mm/hr)= 13 (ii) TIME STEP (DT) SH THAN THE STORAGE (iii) PEAK FLOW DOES NO CALIB </pre>	SELECTED FOR PERVIOUS LOSSES .20 K (1/hr)= 4. .20 Cum.Inf. (mm)= . OULD BE SMALLER OR EQUAL COEFFICIENT. T INCLUDE BASEFLOW IF ANY.	: 14 00
NASHYD (0001) Area ID= 1 DT= 5.0 min Ia Unit Hyd Qpeak (cms)=	(ha)= 4.99 Curve Numb (mm)= 8.90 # of Linea Tp(hrs)= .37 .515	er (CN)= 81.0 r Res.(N)= 3.00
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = (i) PEAK FLOW DOES NOT	.023 (i) 2.167 3.423 24.996 .137 INCLUDE BASEFLOW IF ANY.	
CALIB NASHYD (0006) Area ID= 1 DT= 5.0 min Ia U.H.	(ha)= .72 Curve Numb (mm)= 6.90 # of Linea Tp(hrs)= .17	er (CN)= 85.0 r Res.(N)= 3.00
Unit Hyd Qpeak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)=	.162 .008 (i) 1.667 5.185 24.996	

Project # 210864

3 of 50

RUNOFF COEFFICIENT = .207

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB			-				
STAND	HYD (0003)	Area	(ha)=	.97			
ID= 1	DT= 5.0 min	Total	Imp(%)=	56.00	Dir. (Conn.(%)=	35.00
		_	IMPERVI	OUS	PERVIOUS	5 (i)	
Su	rface Area	(ha)=	.5	4	.43		
De	p. Storage	(mm) =	1.5	7	4.67		
Av	erage Slope	(%) =	3.0	0	2.00		
Le	ngth	(m) =	80.4	0	20.00		
Ma	nnings n	=	.01	3	.300		
		(1)	50.0	-	2 4 2		
Ma	x.Eff.Inten.(n	nm/hr)=	50.2	l	3.49		
~.	over	(min)	5.0	0	25.00		
St	orage Coeff.	(min)=	2.1	2 (11)	22.01	(11)	
Un	it Hyd. Tpeak	(min)=	5.0	0	25.00		
Un	it Hyd. peak	(cms)=	.3	T	.05	. –	
		, ,		-		*']	OTALS*
PE.	AK FLOW	(cms)=	.0	5	.00		.047 (111)
T.T.	ME TO PEAK	(hrs)=	1.5	0	1.83		1.50
RU.	NOF'F' VOLUME	(mm) =	23.4	3	.79		8.71
10	'I'AL RAINF'ALL	(mm) =	25.0	0	25.00		25.00
RU.	NOFF COFF.LICIT	SN1. =	.9	4	.03		.35
+++++ 7.7				ג דוח כוד ד			
•••• W.	ARNING: STORAC	FE COEFF.	. IS SMAL	LER THA	N TIME S	STED!	
	(I) HORIONS EQ	(has) = 76	SELECIED	FOR PER	VIOUS LC	155E5 ·	
	FO (mm)	$(\ln r) = 76$.20	K Traf	(1 / III ⁻) =	= 4.14	
1		(DT) = 13		UULLIIL.		.00	
(11) TIME STEP	(DT) SHO	JULD BE S.	MALLER	OR EQUAL	L	
13	IHAN IHE S	DORAGE (COEFFICIE.	NI.	011 TE 33		
(1	II) PEAK FLOW	DOES NOT	I INCLUDE	BASEFL	OW IF AP	11.	
CALTR	1						
STAND	HYD (0004)	Area	(ha)=	1 59			
TD = 1	DT = 5.0 min	Total	Tmp(\$) =	60 00	Dir ('onn (%)=	34 00
		iocui	Tub(0) -	00.00	D11. (201111. (0) =	51.00
			TMPERVT	OUS	PERVIOUS	5 (i)	
Su	rface Area	(ha)=	. 9	5	. 64	(1)	
De	p. Storage	(mm) =	1.5	5 7	4.67		
Δv	erage Slope	(%)=	3 0	, 0	2 00		
I.e	nath	(m) =	103 0	0	20 00		
Ma:	nninge n	() =	105.0	3	20.00		
ma.	IIIIIIgo II	-	.01	5	. 500		
Ма	x Eff Inten (m	nm/hr)=	50 2	1	11 83		
ria.	A. HII. IIICCII. (I	(min)	5 0	0	15 00		
Q+	orage Coeff	(\min)	2 4	6 (ii)	14 66	(ii)	
IIn	it Hyd Theak	$(\min) = (\min) =$	5 0	0 (11)	15 00	(1 1)	
UII Un	it Hyd. ipeak	(mmm) = (cmmmm) = (cmmmmm)	3.0	0	13.00		
011	it nyu. peak	(Cillo) -	. 5	0	.00	* 7	ግጥ ልጊ ና *
סד	AK FI.OW	(cmg) -	Ο	7	01	. 1	079 (iii)
ድይ. ጥተ	ME TO DEAK	(brc) =	.0	, 0	1 67		· · · · · · · · · · · · · · · · · · ·
	MORE VOLUME	(IILS) =	1.5	0 2	1 70		1.5U 0 1E
F 11	NOLL AOPOLINE	(∠3.4	3	1.19		フ・エコ

(K)	Conceptual Stormwater Management Plan Hilan Village Residential Subdivision					
Project # 210864	4 of 50	38 Carss Street, A	lmonte, Ontari April 11, 202			
TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	25.00 25 .94	5.00 25.00 .07 .37				
***** WARNING: STORAGE COEF	F. IS SMALLER THAN TI	IME STEP!				
 (i) HORTONS EQUATION Fo (mm/hr)= 7 Fc (mm/hr)= 1 (ii) TIME STEP (DT) S: THAN THE STORAGE (iii) PEAK FLOW DOES NO 	SELECTED FOR PERVIOU 6.20 K (1/ 3.20 Cum.Inf. () HOULD BE SMALLER OR H COEFFICIENT. OT INCLUDE BASEFLOW D	JS LOSSES: /hr)= 4.14 (mm)= .00 EQUAL IF ANY.				
CALIB NASHYD (0005) Area ID= 1 DT= 5.0 min Ia U.H.	(ha)= .63 Cu (mm)= 8.90 # Tp(hrs)= .17	urve Number (CN)= of Linear Res.(N)=	81.0 3.00			
Unit Hyd Qpeak (cms)=	.142					
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	.004 (i) 1.750 3.411 24.996 .136					
(i) PEAK FLOW DOES NOT	INCLUDE BASEFLOW IF	ANY.				
RESERVOIR (0011) IN= 2> OUT= 1						
DT= 5.0 min OU	TFLOW STORAGE cms) (ha.m.) .0000 .0000 .0500 .0080 .1030 .0210 .1520 .0390 .1960 .0630 .2350 .0920	OUTFLOW STORAG (cms) (ha.m. .2700 .12 .3010 .16 .3260 .21 .3470 .26 .3640 .31 .3760 .37	E) 60 50 00 00 60 70			
INFLOW : ID= 2 (0001) OUTFLOW: ID= 1 (0011)	AREA QPEAH (ha) (cms) 4.990 .023 4.990 .019	C TPEAK (hrs) 3 2.17 9 2.67	R.V. (mm) 3.42 3.42			
PEAK F. TIME SHI MAXIMUM	LOW REDUCTION [Qout FT OF PEAK FLOW STORAGE USED	<pre>c/Qin](%)= 82.08 (min)= 30.00 (ha.m.)= .0030</pre>				
ADD HYD (0007)		ז רו אוגיינ				

(K)		C	onceptual Hilan V 38	Stormwate /illage Resi Carss Stree	r Management Pla dential Subdivisio t. Almonte, Ontar
roject # 210864		5 of 50)		April 11, 202
ID = 3 (0007)): 5.71	.022	2.67	3.64	
NOTE: PEAK FLOWS	DO NOT INCLU	IDE BASEFL	OWS IF AN	JY.	
ADD HYD (0009)		ODDAW		D 17	
1 + 2 = 3	AREA (ha)	QPEAK (cms)	(hrs)	R.V. (mm)	
ID1= 1 (0004): 1.59	.079	1.50	9.15	
+ ID2= 2 (0005): .63	.004	1.75	3.41	
======================================): 2.22	.081	1.50 ¹		
NOTE: PEAK FLOWS	DO NOT INCLU	IDE BASEFI	OWS IF AN	ΊΥ.	
ADD HYD (0008)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(CmS)	(hrs)	(mm)	
+ ID2 = 2 (0007)): 5.71	.040	2.67	3.64	
==========	=================	==========	============	======	
ID = 3 (0008)): 6.45	.051	1.50	4.43	
1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.	
·	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0003): .97	.047	1.50	8.71	
+ ID2= 2 (0009): 2.22	.081	1.50	7.52	
ID = 3 (0010): 3.19	.128	1.50	7.88	
NOTE: PEAK FLOWS	DO NOT INCLU	IDE BASEFL	OWS IF AN	ΤΥ.	
**************************************	******* : 2 ** ****				
CHICAGO STORM	IDF curve p	arameters	: A= 732.	951	
riolai= 42.34 [[[[[]			в= 6. C= .	.810	
	used in:	INTENSITY	T = A / (t + B)^C	
	Duration of Storm time Time to pea	storm = step = k ratio =	12.00 hr 10.00 mi .33	rs .n	
TIME	RAIN TI	ME RAI	N TIME	E RAIN	TIME RAIN

(K)				Conceptual Stormwater Management Plar Hilan Village Residential Subdivision 38 Carss Street Almonte Ontario					
	(5 of 50		155 5000	Apri	1 11, 2022			
.72 .75 .78 .82 .85 .89 .94 .99 1.04 1.11 1.18 1.27 1.37 1.49 1.63 1.82 2.05 2.37	3.17 3.33 3.50 3.67 3.83 4.00 4.17 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00	$\begin{array}{c} 2.81\\ 3.50\\ 4.69\\ 7.30\\ 18.21\\ 76.81\\ 24.08\\ 12.36\\ 8.32\\ 6.30\\ 5.09\\ 4.29\\ 3.72\\ 3.29\\ 2.95\\ 2.68\\ 2.46\\ 2.28\end{array}$	<pre>6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50 7.67 7.83 8.00 8.17 8.33 8.50 8.67 8.83 9.00</pre>	2.12 1.99 1.87 1.77 1.68 1.60 1.52 1.46 1.40 1.34 1.29 1.24 1.20 1.16 1.13 1.09 1.06 1.03	9.17 9.33 9.50 9.67 9.83 10.00 10.17 10.33 10.50 10.67 10.83 11.00 11.17 11.33 11.50 11.67 11.83 12.00	1.00 .97 .95 .93 .90 .88 .86 .84 .82 .81 .79 .78 .76 .75 .73 .72 .71 .69			
Area Total In	(ha)= mp(%)= !	.74 58.00	Dir. Conn	.(%)=	45.00				
(ha) = (mm) = (%) = (m) = = ALL WAS TH	IMPERVIOU .43 1.57 3.00 70.20 .013 RANSFORM	JS PE ED TO	RVIOUS (i .31 4.67 2.00 20.00 .300 5.0 MIN.) TIME STR	SP.				
	<pre>/ .72 / .75 / .78 / .82 / .85 / .94 / .99 / .94 / .99 / .94 / .99 / .04 / 1.11 / 1.18 / 1.27 / 1.37 / 1.37 / 1.37 / 1.49 / 1.63 / 1.82 / 2.05 / 2.37 / .82 / 2.05 / 2.37 / .82</pre>	.72 3.17 .75 3.33 .78 3.50 .82 3.67 .85 3.83 .99 4.00 .94 4.17 .99 4.33 1.04 4.50 .111 4.67 3.127 5.00 .137 5.17 3.1.49 5.33 1.63 5.50 1.82 5.67 2.05 5.83 2.37 6.00 Area (ha)= Total Imp(%)= IMPERVIOU (ha)= .013 FALL WAS TRANSFORME	6 of 50 .72 3.17 2.81 .75 3.33 3.50 .78 3.50 4.69 .82 3.67 7.30 .85 3.83 18.21 .89 4.00 76.81 .94 4.17 24.08 .99 4.33 12.36 .104 4.50 8.32 .111 4.67 6.30 .127 5.00 4.29 .137 5.17 3.72 .149 5.33 3.29 .163 5.50 2.95 .182 5.67 2.68 .2.05 5.83 2.46 .2.37 6.00 2.28	$\begin{array}{c cccc} Conceptual St \\ Hilan Vill \\ 38 Ca \\ 6 of 50 \\ \hline \\ $	$\begin{array}{c cccc} Conceptual StormwaterHilan Village Res38 Carss Stree6 of 50 \\ \hline \\ $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			

	IRA	ANSFORMEL	HYEIOGRAPH				
RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN	
mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	
.72	3.083	2.81	6.083	2.12	9.08	1.00	
.72	3.167	2.81	6.167	2.12	9.17	1.00	
.75	3.250	3.50	6.250	1.99	9.25	.97	
.75	3.333	3.50	6.333	1.99	9.33	.97	
.78	3.417	4.69	6.417	1.87	9.42	.95	
.78	3.500	4.69	6.500	1.87	9.50	.95	
.82	3.583	7.30	6.583	1.77	9.58	.93	
.82	3.667	7.30	6.667	1.77	9.67	.93	
.85	3.750	18.21	6.750	1.68	9.75	.90	
.85	3.833	18.21	6.833	1.68	9.83	.90	
.89	3.917	76.80	6.917	1.60	9.92	.88	
.89	4.000	76.81	7.000	1.60	10.00	.88	
.94	4.083	24.08	7.083	1.52	10.08	.86	
.94	4.167	24.08	7.167	1.52	10.17	.86	
.99	4.250	12.36	7.250	1.46	10.25	.84	
.99	4.333	12.36	7.333	1.46	10.33	.84	
1.04	4.417	8.32	7.417	1.40	10.42	.82	
1.04	4.500	8.32	7.500	1.40	10.50	.82	
1.11	4.583	6.30	7.583	1.34	10.58	.81	
1.11	4.667	6.30	7.667	1.34	10.67	.81	
1.18	4.750	5.09	7.750	1.29	10.75	.79	
	RAIN mm/hr .72 .75 .75 .78 .78 .82 .82 .85 .85 .89 .89 .94 .94 .94 .99 .99 1.04 1.04 1.11 1.11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RAIN TIME RAIN mm/hr hrs mm/hr .72 3.083 2.81 .72 3.167 2.81 .75 3.250 3.50 .75 3.333 3.50 .78 3.417 4.69 .82 3.583 7.30 .82 3.667 7.30 .85 3.750 18.21 .85 3.833 18.21 .89 3.917 76.80 .89 4.000 76.81 .94 4.083 24.08 .94 4.167 24.08 .99 4.250 12.36 .99 4.333 12.36 1.04 4.417 8.32 1.04 4.500 8.32 1.11 4.667 6.30 1.18 4.750 5.09	RAIN TIME RAIN TIME mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs .72 3.083 2.81 6.083 .72 3.167 2.81 6.167 .75 3.250 3.50 6.250 .75 3.333 3.50 6.333 .78 3.417 4.69 6.417 .78 3.500 4.69 6.500 .82 3.583 7.30 6.667 .85 3.750 18.21 6.750 .85 3.833 18.21 6.833 .89 3.917 76.80 6.917 .89 4.000 76.81 7.000 .94 4.083 24.08 7.167 .99 4.250 12.36 7.250 .99 4.333 12.36 7.333 1.04 4.417 8.32 7.417 1.04 4.500 8.32 7.500 </td <td>RAIN TIME RAIN TIME RAIN mm/hr hrs mm/hr hrs mm/hr hrs mm/hr .72 3.083 2.81 6.083 2.12 .72 3.167 2.81 6.167 2.12 .75 3.250 3.50 6.250 1.99 .75 3.333 3.50 6.333 1.99 .78 3.417 4.69 6.417 1.87 .78 3.500 4.69 6.500 1.87 .82 3.583 7.30 6.667 1.77 .82 3.667 7.30 6.667 1.77 .82 3.667 7.30 6.667 1.68 .85 3.833 18.21 6.750 1.68 .85 3.833 18.21 6.833 1.68 .89 3.917 76.80 6.917 1.60 .94 4.000 76.81 7.000 1.60 .94 4.083</td> <td>RAINTIMERAINTIMERAINTIMEmm/hrhrsmm/hrhrsmm/hrhrs$72$$3.083$$2.81$$6.083$$2.12$$9.08$$.72$$3.167$$2.81$$6.167$$2.12$$9.17$$.75$$3.250$$3.50$$6.250$$1.99$$9.25$$.75$$3.333$$3.50$$6.333$$1.99$$9.33$$.78$$3.417$$4.69$$6.417$$1.87$$9.42$$.78$$3.500$$4.69$$6.500$$1.87$$9.50$$.82$$3.583$$7.30$$6.667$$1.77$$9.67$$.82$$3.667$$7.30$$6.667$$1.77$$9.67$$.85$$3.750$$18.21$$6.750$$1.68$$9.83$$.89$$3.917$$76.80$$6.917$$1.60$$9.92$$.89$$4.000$$76.81$$7.000$$1.60$$10.00$$.94$$4.083$$24.08$$7.167$$1.52$$10.17$$.99$$4.250$$12.36$$7.250$$1.46$$10.25$$.99$$4.333$$12.36$$7.333$$1.46$$10.33$$1.04$$4.417$$8.32$$7.417$$1.40$$10.42$$1.04$$4.500$$8.32$$7.500$$1.40$$10.50$$1.11$$4.667$$6.30$$7.667$$1.34$$10.67$$1.18$$4.750$$5.09$$7.750$$1.29$$10.75$</td>	RAIN TIME RAIN TIME RAIN mm/hr hrs mm/hr hrs mm/hr hrs mm/hr .72 3.083 2.81 6.083 2.12 .72 3.167 2.81 6.167 2.12 .75 3.250 3.50 6.250 1.99 .75 3.333 3.50 6.333 1.99 .78 3.417 4.69 6.417 1.87 .78 3.500 4.69 6.500 1.87 .82 3.583 7.30 6.667 1.77 .82 3.667 7.30 6.667 1.77 .82 3.667 7.30 6.667 1.68 .85 3.833 18.21 6.750 1.68 .85 3.833 18.21 6.833 1.68 .89 3.917 76.80 6.917 1.60 .94 4.000 76.81 7.000 1.60 .94 4.083	RAINTIMERAINTIMERAINTIMEmm/hrhrsmm/hrhrsmm/hrhrs 72 3.083 2.81 6.083 2.12 9.08 $.72$ 3.167 2.81 6.167 2.12 9.17 $.75$ 3.250 3.50 6.250 1.99 9.25 $.75$ 3.333 3.50 6.333 1.99 9.33 $.78$ 3.417 4.69 6.417 1.87 9.42 $.78$ 3.500 4.69 6.500 1.87 9.50 $.82$ 3.583 7.30 6.667 1.77 9.67 $.82$ 3.667 7.30 6.667 1.77 9.67 $.85$ 3.750 18.21 6.750 1.68 9.83 $.89$ 3.917 76.80 6.917 1.60 9.92 $.89$ 4.000 76.81 7.000 1.60 10.00 $.94$ 4.083 24.08 7.167 1.52 10.17 $.99$ 4.250 12.36 7.250 1.46 10.25 $.99$ 4.333 12.36 7.333 1.46 10.33 1.04 4.417 8.32 7.417 1.40 10.42 1.04 4.500 8.32 7.500 1.40 10.50 1.11 4.667 6.30 7.667 1.34 10.67 1.18 4.750 5.09 7.750 1.29 10.75	

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario Project # 210864 7 of 50 April 11, 2022 1.833 1.18 | 4.833 5.09 | 7.833 1.29 | 10.83 .79 1.917 1.27 4.917 4.29 7.917 1.24 10.92 .78 2.000 1.27 5.000 4.29 8.000 1.24 11.00 .78 .76 2.083 1.37 | 5.083 3.72 | 8.083 1.20 | 11.08 .76 2.167 1.37 | 5.167 3.72 | 8.167 1.20 | 11.17 2.250 1.49 5.250 3.29 8.250 1.16 11.25 .75 2.333 1.49 | 5.333 3.29 | 8.333 1.16 | 11.33 .75 2.333 1.49 5.333 3.29 8.333 1.16 11.33 2.417 1.63 5.417 2.95 8.417 1.13 11.42 2.500 1.63 5.500 2.95 8.500 1.13 11.50 2.583 1.82 5.583 2.68 8.583 1.09 11.58 2.667 1.82 5.667 2.68 8.667 1.09 11.67 2.750 2.05 5.750 2.46 8.750 1.06 11.75 2.833 2.05 5.833 2.46 8.833 1.06 11.83 2.917 2.37 5.917 2.28 8.917 1.03 11.92 3.000 2.37 6.000 2.28 9.000 1.03 12.00 .73 .73 .72 .72 .71 .71 .69 .69 Max.Eff.Inten.(mm/hr)= 76.81 42.57 over (min) 5.00 10.00 Storage Coeff. (min)= 1.65 (ii) 8.96 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 Unit Hyd. peak (cms)= .32 .12 *TOTALS* PEAK FLOW (cms)= .07 .03 TIME TO PEAK (hrs)= 4.00 4.08 RUNOFF VOLUME (mm)= 40.77 6.68 TOTAL RAINFALL (mm)= 42.34 42.34 RUNOFF COEFFICIENT = .96 .16 .086 (iii) 4.00 22.02 42.34 .52 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= .00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ _____ CALIB CALIB | NASHYD (0001) Area (ha)= 4.99 Curve Number (CN)= 81.0 ID= 1 DT= 5.0 min Ia (mm)= 8.90 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .37 Unit Hyd Qpeak (cms)= .515 PEAK FLOW (cms) = .089 (i) TIME TO PEAK (hrs) = 4.417 RUNOFF VOLUME (mm) = 12.021 TOTAL RAINFALL (mm) = 42.344 RUNOFF COEFFICIENT = .284 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ _____ | CALIB NASHYD (0006) Area (ha)= .72 Curve Number (CN)= 85.0 ID= 1 DT= 5.0 min Ia (mm)= 6.90 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= .17

(K)	Conceptual Stormwater Management Hilan Village Residential Subdivi 38 Carss Street, Almonte, On			
Project # 210864	8 of 50		April 11, 2022	
Unit Hyd Qpeak (cms)=	.162			
PEAK FLOW (cms)= TIME TO PEAK (hrs)=	.029 (i) 4.167			
RUNOFF VOLUME (mm) =	15.594			
TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	42.344 .368			
(i) PEAK FLOW DOES NOT	INCLUDE BASEFLOW	IF ANY.		
CALIB				
STANDHYD (0003) Area ID= 1 DT= 5.0 min Tota	(ha)= .97 l Imp(%)= 56.00	Dir. Conn.(%)=	35.00	
	IMPERVIOUS	PERVIOUS (i)		
Surface Area (ha)=	.54	.43		
Dep. Storage (mm)=	1.57	4.67		
Average Slope (%)=	3.00	2.00		
Mannings n =	.013	.300		
Max.Eff.Inten.(mm/hr)=	76.81	58.47		
over (min)	5.00	10.00		
Storage Coeff. (min)=	1.79 (ii)	8.23 (ii)		
Unit Hyd. 'lpeak (min)=	5.00	10.00		
onic nya. peak (ems)-	. 52	.15	TOTALS*	
PEAK FLOW (cms)=	.07	.05	.104 (iii)	
TIME TO PEAK (hrs)=	4.00	4.08	4.00	
RUNOFF VOLUME (mm) =	40.77	8.52	19.81	
TOTAL RAINFALL (mm)=	42.34	42.34	42.34	
RUNOFF COEFFICIENT =	.96	.20	.47	
***** WARNING: STORAGE COEF	F. IS SMALLER THAN	N TIME STEP!		
(i) HORTONS EQUATION	SELECTED FOR PER	VIOUS LOSSES:		
Fo $(mm/hr) = 7$	6.20 K	(1/hr) = 4.14		
FC (mm/nr) = 1 (ii) TIME STED (DT) S	HOULD BE SMALLER ((IIIII) = .00		
THAN THE STORAGE	COEFFICIENT.	OK EQUAL		
(iii) PEAK FLOW DOES N	OT INCLUDE BASEFLO	OW IF ANY.		
CALIB				
ID= 1 DT= 5.0 min Tota	(na) = 1.59 l Imp(%) = 60.00	Dir. Conn.(%)=	34.00	
	IMPERVIOUS	PERVIOUS (i)		
Surface Area (ha)=	.95	.64		
Dep. Storage (mm)=	1.57	4.67		
Average Slope (%)=	3.00	2.00		
Length (m)=	103.00	20.00		
Mannings n =	.013	.300		
<pre>Max.Eff.Inten.(mm/hr)=</pre>	76.81	74.57		
over (min)	5.00	10.00		

K		Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario				
Project # 210864		9 of 5	0		April 11, 2022	
Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	(min) = k (min) = (cms) =	2.08 (ii) 5.00 .31	7.92 (10.00 .13	ii)		
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(cms)= (hrs)= (mm)= (mm)= IENT =	.11 4.00 40.77 42.34 .96	.09 4.08 10.11 42.34 .24	*TOTALS .180 4.00 20.53 42.34 .48	* (iii)	
***** WARNING: STOR	AGE COEFF. IS	S SMALLER TH	AN TIME ST	EP!		
(i) HORTONS Fo (m Fc (m (ii) TIME STE THAN THE (iii) PEAK FLO	EQUATION SELH m/hr)= 76.20 m/hr)= 13.20 P (DT) SHOULH STORAGE COEH W DOES NOT IN	ECTED FOR PE K Cum.Inf D BE SMALLER FFICIENT. NCLUDE BASEF	RVIOUS LOS (1/hr)= . (mm)= OR EQUAL LOW IF ANY	SES: 4.14 .00		
CALIB NASHYD (0005) ID= 1 DT= 5.0 min	- Area Ia - U.H. Tp()	(ha)= .63 (mm)= 8.90 hrs)= .17	Curve N # of Li	umber (CN)= near Res.(N)=	81.0 3.00	
Unit Hyd Qpeak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC (i) PEAK FLOW	(cms) = (hrs) = 4 (hrs) = 4 (mm) = 11 (mm) = 42 IENT = DOES NOT INCI	.142 .018 (i) .167 .980 .344 .283 LUDE BASEFLO	W IF ANY.			
RESERVOIR (0011) IN= 2> OUT= 1 DT= 5.0 min	- - (cms) .000(.050(.103(.152(.196(.235(<pre>N STORAGE (ha.m.)) .0000) .0080) .0210) .0390) .0630) .0920</pre>	OUTF (cm 2 3 3 3 3 3 3 3 3 3 3 3 3 3	LOW STORAG s) (ha.m. 700 .12 010 .16 260 .21 470 .26 640 .31 760 .37	E) 60 50 00 00 60 70	
INFLOW : ID= 2 OUTFLOW: ID= 1	(0001) (0011) PEAK FLOW	AREA (ha) 4.990 4.990 REDUCTION	QPEAK (cms) .089 .061 [Qout/Qin]	TPEAK (hrs) 4.42 4.92 (%)= 68.73	R.V. (mm) 12.02 12.01	
	IIME SHIFT OF	RAGE USED	(m (ha.	m.)= .0108		
(K)	Conceptual Stormwater Management F Hilan Village Residential Subdivis 38 Carss Street, Almonte, Ont				Management Plan dential Subdivision Almonte, Ontario	
---	---	---------------	------------------------	----------------------	--	
Project # 210864		10 of 5	50		April 11, 202	
ADD HYD (0007) 1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.		
ID1= 1 (0011): + ID2= 2 (0006):	4.99 .72	.061 .029	4.92 4.17	12.01 15.59		
ID = 3 (0007):	5.71	.068	4.83	12.47		
NOTE: PEAK FLOWS DO N	IOT INCLU	IDE BASEFL	OWS IF AI	NY.		
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.		
TD1 - 1 (0004).	(ha) 1 50	(Cms)	(hrs)	(mm)		
+ ID2 = 2 (0004):	1.59 .63	.180	4.00	20.53 11.98		
ID = 3 (0009):	2.22	.190	4.00	====== 18.11		
NOTE: PEAK FLOWS DO N	JOT INCLU	IDE BASEFL	OWS IF AI	NY.		
ADD HYD (0008)	ΔΡΓΔ	ODFAK	TDFAK	P 17		
	(ha)	(cms)	(hrs)	(mm)		
ID1= 1 (0002):	.74	.086	4.00	22.02		
+ ID2= 2 (0007): ===================	5./⊥ ========	.068	4.83	12.4/		
ID = 3 (0008):	6.45	.108	4.00	13.56		
NOTE: PEAK FLOWS DO N	IOT INCLU	IDE BASEFL	OWS IF AN	NY.		
ADD HYD (0010)						
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.		
ID1= 1 (0003):	(11a) .97	(Cms) .104	(nrs) 4.00	(mm) 19.81		
+ ID2= 2 (0009):	2.22	.190	4.00	18.11		
ID = 3 (0010):	3.19	.295	4.00	18.62		
NOTE: PEAK FLOWS DO N	IOT INCLU	IDE BASEFL	OWS IF AN	NY.		
**************************************	·					
CHICAGO STORM IDE Ptotal= 56.17 mm	' curve p	parameters	: A= 998 B= 6 C=	.071 .053 .814		
use	ed in:	INTENSITY	= A /	(t + B)^C		

Duration of storm = 12.00 hrs Storm time step = 10.00 min Time to peak ratio = .33

TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.17	.94	3.17	3.68	6.17	2.77	9.17	1.30
.33	.98	3.33	4.58	6.33	2.60	9.33	1.27
.50	1.02	3.50	6.15	6.50	2.44	9.50	1.24
.67	1.06	3.67	9.61	6.67	2.31	9.67	1.20
.83	1.11	3.83	24.17	6.83	2.19	9.83	1.17
1.00	1.16	4.00	104.19	7.00	2.08	10.00	1.15
1.17	1.22	4.17	32.04	7.17	1.99	10.17	1.12
1.33	1.28	4.33	16.34	7.33	1.90	10.33	1.10
1.50	1.36	4.50	10.96	7.50	1.82	10.50	1.07
1.67	1.44	4.67	8.29	7.67	1.75	10.67	1.05
1.83	1.54	4.83	6.69	7.83	1.68	10.83	1.03
2.00	1.65	5.00	5.63	8.00	1.62	11.00	1.01
2.17	1.78	5.17	4.87	8.17	1.57	11.17	.99
2.33	1.94	5.33	4.30	8.33	1.51	11.33	.97
2.50	2.13	5.50	3.86	8.50	1.47	11.50	.95
2.67	2.37	5.67	3.51	8.67	1.42	11.67	.93
2.83	2.68	5.83	3.22	8.83	1.38	11.83	.92
3.00	3.10	6.00	2.98	9.00	1.34	12.00	.90

| CALIB | | STANDHYD (0002) | Area (ha)= .74 |ID= 1 DT= 5.0 min | Total Imp(%)= 58.00 Dir. Conn.(%)= 45.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= .43 .31

Surface Area	(ha)=	.43	.31	
Dep. Storage	(mm) =	1.57	4.67	
Average Slope	(응) =	3.00	2.00	
Length	(m) =	70.20	20.00	
Mannings n	=	.013	.300	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED	HYETOG	RAPH·	-	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	.94	3.083	3.68	6.083	2.77	9.08	1.30
.167	.94	3.167	3.68	6.167	2.77	9.17	1.30
.250	.98	3.250	4.58	6.250	2.60	9.25	1.27
.333	.98	3.333	4.58	6.333	2.60	9.33	1.27
.417	1.02	3.417	6.15	6.417	2.44	9.42	1.24
.500	1.02	3.500	6.15	6.500	2.44	9.50	1.24
.583	1.06	3.583	9.61	6.583	2.31	9.58	1.20
.667	1.06	3.667	9.61	6.667	2.31	9.67	1.20
.750	1.11	3.750	24.17	6.750	2.19	9.75	1.17
.833	1.11	3.833	24.17	6.833	2.19	9.83	1.17
.917	1.16	3.917	104.19	6.917	2.08	9.92	1.15
1.000	1.16	4.000	104.19	7.000	2.08	10.00	1.15
1.083	1.22	4.083	32.04	7.083	1.99	10.08	1.12
1.167	1.22	4.167	32.04	7.167	1.99	10.17	1.12

			۰.
()	Ľ		1
1		.	,
· ·	_		

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario of 50 April 11, 2022

Project # 210864	12 of 50		April 11, 202			
<pre>1.250 1.28 1.333 1.28 1.417 1.36 1.500 1.36 1.583 1.44 1.667 1.44 1.750 1.54 1.833 1.54 1.917 1.65 2.000 1.65 2.083 1.78 2.167 1.78 2.250 1.94 2.333 1.94 2.417 2.13 2.500 2.13 2.583 2.37 2.667 2.37 2.750 2.68 2.833 2.68 2.917 3.10 3.000 3.10 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)=</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.583 8.667 8.750 8.833 8.917 9.000 86.02 10.00 .14 .06 4.08	<pre>1.90 10.25 1.10 1.90 10.33 1.10 1.82 10.42 1.07 1.82 10.50 1.07 1.75 10.58 1.05 1.75 10.67 1.05 1.68 10.75 1.03 1.68 10.83 1.03 1.62 10.92 1.01 1.62 11.00 1.01 1.57 11.08 .99 1.57 11.17 .99 1.51 11.25 .97 1.51 11.33 .97 1.47 11.42 .95 1.47 11.50 .95 1.42 11.58 .93 1.42 11.67 .93 1.38 11.75 .92 1.38 11.83 .92 1.34 12.00 .90 *TOTALS* .138 (iii) 4.00</pre>			
RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	54.60 56.17	14.68 56.17 .26	32.64 56.17			
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= .00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>						
CALIB NASHYD (0001) Area ID= 1 DT= 5.0 min Ia U.H. Tp	(ha)= 4.99 ((mm)= 8.90 ; (hrs)= .37	Curve Number # of Linear	r (CN)= 81.0 Res.(N)= 3.00			
Unit Hyd Qpeak (cms)=	.515					
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = 20 TOTAL RAINFALL (mm) = 56 RUNOFF COEFFICIENT =	.174 (i) 4.417 0.908 5.170 .372					
(i) PEAK FLOW DOES NOT INC	CLUDE BASEFLOW I	F ANY.				

Project # 210864		14	of 50		April	11, 2022
Dep. Storage	(mm) =	1.57	4.67	7		
Length	e (%)= (m)=	103.00	2.00)		
Mannings n	() =	.013	.300)		
Max.Eff.Inter	n.(mm/hr)=	104.19	136.94	Ł		
70	ver (min)	5.00	10.00)		
Storage Coef	E. (min)=	1.84 (i	i) 6.42	2 (ii)		
Unit Hyd. Tpe	eak (min)=	5.00	10.00)		
Unit Hyd. pea	ak (cms)=	.32	.14		+========	
DENK ELOM	(1.0	1 5	,	*TOTALS*	
PEAK FLOW	(Cms) =	.10	/	,	.304 (111)	
DINOFE VOLUM	$(\Pi S) = T$	4.00	4.00)	4.00	
	$\Sigma (\text{IIIII}) =$	56 17	19.12	7	56 17	
RUNOFF COEFF:	ICIENT =	.97	.34	Ŀ	.56	
***** WARNING: STO	ORAGE COEFF.	IS SMALLER	THAN TIME	STEP!		
(i) HORTONS	S EQUATION S	ELECTED FOR	PERVIOUS I	OSSES:		
Fo	(mm/hr) = 76.2	20	K (1/hr)	= 4.14		
Fc	(mm/hr)= 13.1	20 Cum.I	nf. (mm)	= .00		
(ii) TIME ST	FEP (DT) SHO	JLD BE SMALL	ER OR EQUA	L		
THAN TH	HE STORAGE CO	DEFFICIENT.				
(iii) PEAK FI	LOW DOES NOT	INCLUDE BAS	EFLOW IF A	NY.		
CALIB		(ba) -	6.2 (1)10110	Number	(CNI) = 91.0	
NASHID (0005) 1 - 0.0000 1 - 0.000) Area	(11a) = .	90 # of	Iinear P	(CN) = 81.0	
	. – та тн т	$(\operatorname{IIIII}) = 0.$	90 # 01 17	LINEAL K	es.(n) = 5.00	
	0.11. 1]	<u>9(1110)</u>	17			
Unit Hyd Qpea	ak (cms)=	.142				
PEAK FLOW	(cms)=	.035 (i)				
TIME TO PEAK	(hrs)=	4.167				
RUNOFF VOLUM	E (mm) = 2	20.837				
TOTAL RAINFAI	LL (mm)= !	56.170				
RUNOFF COEFF.	ICIENT =	.3/1				
(i) PEAK FLOW	N DOES NOT I	NCLUDE BASEF	LOW IF ANY			
RESERVOIR (0011)					
IN= 2> OUT= 1	, , 1					
DT= 5.0 min	OUTF	LOW STORA	GE OU	JTFLOW	STORAGE	
	(cm;	s) (ha.m	ı.) (cms)	(ha.m.)	
	.0	.00	00	.2700	.1260	
	.0	500 .00	80	.3010	.1650	
	.1	.02	10	.3260	.2100	
	.1	520 .03	90	.3470	.2600	
	.1	960 .06	30	.3640	.3160	
	. 2	350 .09	20	.3760	.3770	
		AREA	QPEAK	TPEA	K R.V.	
		(ha)	(cms)	(hrs) (mm)	
INFLOW : ID=	2 (0001)	4.990	.174	4.4	2 20.91	
OUTFLOW: ID=	⊥ (0011)	4.990	.108	4.9	2 20.90	

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario Project # 210864 15 of 50 April 11, 2022 PEAK FLOW REDUCTION [Qout/Qin](%)= 61.98 TIME SHIFT OF PEAK FLOW (min) = 30.00 MAXIMUM STORAGE USED (ha.m.)= .0227 _____ _____ ADD HYD (0007) AREA QPEAK TPEAK R.V. 1 + 2 = 3

 ID1= 1 (0011):
 4.99
 .108
 4.92
 20.90

 + ID2= 2 (0006):
 .72
 .052
 4.08
 25.71

 _____ (mm) ID = 3 (0007): 5.71 .119 4.75 21.51 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0009) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)

 ID1= 1 (0004):
 1.59
 .304
 4.00
 31.18

 + ID2= 2 (0005):
 .63
 .035
 4.17
 20.84

 ------ID = 3 (0009): 2.22 .329 4.00 28.25NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0008)

 2 = 3
 AREA
 QPEAK
 TPEAK
 R.V.

 ------ (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0002):
 .74
 .138
 4.00
 32.64

 + ID2= 2
 (0007):
 5.71
 .119
 4.75
 21.51

 1 + 2 = 3 _____ ------ID = 3 (0008): 6.45 .185 4.00 22.78 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0010) 1 + 2 = 3 AREA QPEAK TPEAK R.V. _____ (ha) (cms) (hrs) (mm) ID1= 1 (0003): .97 .175 4.00 30.21 + ID2= 2 (0009): 2.22 .329 4.00 28.25 ID = 3 (0010): 3.19 .504 4.00 28.84 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ** SIMULATION NUMBER: 4 **

10 0.

CHICAGO STORM Ptotal= 65.22 mm	IDF curve pa used in: I Duration of Storm time s Time to peak	NTENSITY = storm = 1 tep = 1 ratio =	A=1174.18 B= 6.01 C= .81 A / (t 2.00 hrs 0.00 min .33	5 4 6 + B)^C		
TIME hrs .17 .33 .50 .67 .83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00	RAIN TIM mm/hr hr 1.08 3.1 1.12 3.3 1.17 3.5 1.22 3.6 1.27 3.8 1.33 4.0 1.40 4.1 1.48 4.3 1.56 4.5 1.66 4.6 1.77 4.8 1.90 5.0 2.05 5.1 2.23 5.3 2.45 5.5 3.09 5.8 3.57 6.0	IE RAIN rs mm/hr 7 4.25 3 5.29 0 7.11 17 11.13 3 28.10 0 122.14 7 37.28 3 18.95 0 12.70 7 9.59 3 7.73 0 6.50 7 5.63 3 4.97 0 4.46 7 4.05 3 3.71 0 3.43	TIME hrs 6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50 7.67 7.83 8.00 8.17 8.33 8.50 8.67 8.83 9.00	RAIN mm/hr 3.20 2.99 2.81 2.66 2.52 2.40 2.29 2.19 2.09 2.01 1.94 1.87 1.80 1.74 1.69 1.63 1.59 1.54	TIME hrs 9.17 9.33 9.50 9.67 9.83 10.00 10.17 10.33 10.50 10.67 10.83 11.00 11.17 11.33 11.50 11.67 11.83 12.00	RAIN mm/hr 1.50 1.46 1.42 1.38 1.35 1.32 1.29 1.26 1.23 1.21 1.18 1.16 1.13 1.11 1.09 1.07 1.05 1.03
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area (ha)= Total Imp(%)=	.74	Dir. Conn	.(%)= 4	45.00	
Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RAINFAI	IMPERV (ha)= . (mm)= 1. (%)= 3. (m)= 70. = .0	TIOUS PE 43 57 00 20 13 RMED TO	RVIOUS (i .31 4.67 2.00 20.00 .300 5.0 MIN.) TIME STF	EP.	

		TR.	ANSFORMED	HYETOG	RAPH	-	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	1.08	3.083	4.25	6.083	3.20	9.08	1.50
.167	1.08	3.167	4.25	6.167	3.20	9.17	1.50
.250	1.12	3.250	5.29	6.250	2.99	9.25	1.46
.333	1.12	3.333	5.29	6.333	2.99	9.33	1.46
.417	1.17	3.417	7.11	6.417	2.81	9.42	1.42
.500	1.17	3.500	7.11	6.500	2.81	9.50	1.42
.583	1.22	3.583	11.13	6.583	2.66	9.58	1.38

Project # 21086417 of 50April 11,.6671.223.66711.136.6672.669.671.3.7501.273.75028.106.7502.529.751.3.8331.273.83328.106.8332.529.831.3.9171.333.917122.146.9172.409.921.31.0001.334.000122.147.0002.4010.001.331.1671.404.16737.287.1672.2910.171.21.2501.484.25018.957.2502.1910.251.21.3331.484.33318.957.3332.1910.331.21.4171.564.41712.707.4172.0910.421.21.5001.564.50012.707.5002.0910.501.21.5831.664.5839.597.5832.0110.671.21.5831.664.6679.597.6672.0110.671.21.7501.774.7507.737.7501.9410.751.11.8331.774.8337.737.8331.9410.831.11.9171.904.9176.507.9171.8710.921.12.0832.055.0835.638.0831.8011.08	Plan ision tario
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2022
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
2.250 2.23 5.250 4.97 8.250 1.74 11.25 1.1 2.333 2.23 5.333 4.97 8.333 1.74 11.33 1.1 2.417 2.45 5.417 4.46 8.417 1.69 11.42 1.0	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	1
	9
2.500 2.45 5.500 4.46 8.500 1.69 11.50 1.0	9
2.583 2.73 5.583 4.05 8.583 1.63 11.58 1.0	7
2.667 2.73 5.667 4.05 8.667 1.63 11.67 1.0	7
2.750 3.09 5.750 3.71 8.750 1.59 11.75 1.0	5
2.833 3.09 5.833 3.71 8.833 1.59 11.83 1.0	5
2.917 3.57 5.917 3.43 8.917 1.54 11.92 1.0	3
3.000 3.57 6.000 3.43 9.000 1.54 12.00 1.0	3

<pre>Max.Eff.Inten.(mm/hr)=</pre>	122.14	118.53	
over (min)	5.00	10.00	
Storage Coeff. (min)=	1.37 (ii)	6.04 (ii)	
Unit Hyd. Tpeak (min)=	5.00	10.00	
Unit Hyd. peak (cms)=	.33	.15	
			TOTALS
PEAK FLOW (cms)=	.11	.08	.176 (iii)
TIME TO PEAK (hrs)=	4.00	4.08	4.00
RUNOFF VOLUME (mm) =	63.65	20.65	40.00
TOTAL RAINFALL (mm) =	65.22	65.22	65.22
RUNOFF COEFFICIENT =	.98	.32	.61

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= .00
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

-----| CALIB |
| NASHYD (0001) | Area (ha)= 4.99 Curve Number (CN)= 81.0
|ID= 1 DT= 5.0 min | Ia (mm)= 8.90 # of Linear Res.(N)= 3.00
------ U.H. Tp(hrs)= .37
Unit Hyd Qpeak (cms)= .515

(K)	Conceptual Stormwater Management Pl Hilan Village Residential Subdivisi			
Project # 210864	38 Ca 18 of 50	Arss Street, Almonte, Ontario April 11, 2022		
PEAK FLOW (cms TIME TO PEAK (hrs RUNOFF VOLUME (mm TOTAL RAINFALL (mm RUNOFF COEFFICIENT	e .237 (i) = 4.417 = 27.362 = 65.219 = .420			
(i) PEAK FLOW DOES N	OT INCLUDE BASEFLOW IF ANY.			
CALIB NASHYD (0006) Ar ID= 1 DT= 5.0 min Ia U.	ea (ha)= .72 Curve Nur (mm)= 6.90 # of Line H. Tp(hrs)= .17	nber (CN)= 85.0 ear Res.(N)= 3.00		
Unit Hyd Qpeak (cms	= .162			
PEAK FLOW (cms TIME TO PEAK (hrs RUNOFF VOLUME (mm TOTAL RAINFALL (mm RUNOFF COEFFICIENT	e .070 (i) = 4.083 = 32.856 = 65.219 = .504			
(i) PEAK FLOW DOES N	DT INCLUDE BASEFLOW IF ANY.			
CALIB STANDHYD (0003) Ar ID= 1 DT= 5.0 min To	ea (ha)= .97 cal Imp(%)= 56.00 Dir. Conr	n.(%)= 35.00		
	IMPERVIOUS PERVIOUS (:	L)		
Surface Area (ha Dep. Storage (mm Average Slope (% Length (m Mannings n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
May Eff Inten (mm/br	- 100 17 178 20			
over (min Storage Coeff. (min Unit Hyd. Tpeak (min Unit Hyd. peak (cms	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i)		
PEAK FLOW (cms TIME TO PEAK (hrs RUNOFF VOLUME (mm TOTAL RAINFALL (mm RUNOFF COEFFICIENT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*TOTALS* .228 (iii) 4.00 37.34 65.22 .57		
**** WARNING: STORAGE CO	EFF. IS SMALLER THAN TIME STEP	2!		
(i) HORTONS EQUATI Fo (mm/hr)=	N SELECTED FOR PERVIOUS LOSSI 76.20 K $(1/hr) = 4$	ES: 4.14		
FC (mm/hr)= (ii) TIME STEP (DT) THAN THE STORA (iii) PEAK FLOW DOES	13.20 Cum.Inf. (mm)= SHOULD BE SMALLER OR EQUAL SE COEFFICIENT. NOT INCLUDE BASEFLOW IF ANY.	.00		
. ,				

CALIB STANDHYD (0004) | Area (ha)= 1.59 ID= 1 DT= 5.0 min | Total Imp(%)= 60.00 Dir. Conn.(%)= 34.00 ------IMPERVIOUS PERVIOUS (i)

 Surface Area
 (ha)=
 .95
 .64

 Dep. Storage
 (mm)=
 1.57
 4.67

 Average Slope
 (%)=
 3.00
 2.00

 Length
 (m)=
 103.00
 20.00

 Mannings n
 =
 .013
 .300

 Max.Eff.Inten.(mm/hr)=122.14178.54over (min)5.0010.00Storage Coeff. (min)=1.73 (ii)5.85Unit Hyd. Tpeak (min)=5.0010.00Unit Hyd. peak (cms)=.32.15 5.85 (ii) .15 *TOTALS*

 PEAK FLOW
 (cms) =
 .18
 .22

 TIME TO PEAK
 (hrs) =
 4.00
 4.08

 RUNOFF VOLUME
 (mm) =
 63.65
 25.31

 TOTAL RAINFALL
 (mm) =
 65.22
 65.22

 RUNOFF COEFFICIENT
 =
 .98
 .39

 .392 (iii) 4.00 38.35 65.22 .59 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= .00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ _____ CALIB NASHYD (0005) Area (ha)= .63 Curve Number (CN)= 81.0 |ID= 1 DT= 5.0 min | Ia (mm)= 8.90 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= .17 Unit Hyd Qpeak (cms)= .142 PEAK FLOW (cms)= .047 (i) TIME TO PEAK (hrs) = 4.167 RUNOFF VOLUME (mm) = 27.269 TOTAL RAINFALL (mm) = 65.219 RUNOFF COEFFICIENT = .418 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ _____ | RESERVOIR (0011) | IN= 2---> OUT= 1 OUTFLOWSTORAGEOUTFLOWSTORAGE(cms)(ha.m.)(cms)(ha.m.).0000.0000.2700.1260.0500.0080.3010.1650.1030.0210.3260.2100.1520.0390.3470.2600 DT= 5.0 min _____

(K)	Conceptual Stormwater Manage Hilan Village Residential S 38 Carss Street, Almon				
Project # 210864		20 of	50		April 11, 2022
	.1960 .2350	.0630 .0920		.3640 .3760	.3160 .3770
INFLOW : ID= 2 (0001) OUTFLOW: ID= 1 (0011)	AREA (ha) 4.990 4.990)	QPEAK (cms) .237 .136	TPEAK (hrs) 4.42 4.92	R.V. (mm) 27.36 27.36
PEAK I TIME SHI MAXIMUM	FLOW REDU IFT OF PEAK STORAGE	JCTION FLOW USED	[Qout/Qi (ł	in](%)= 57.2 (min)= 30.0 ha.m.)= .0	7 0 331
ADD HYD (0007) 1 + 2 = 3	AREA	QPEAK	TPEAF	K R.V.	
ID1= 1 (0011): + ID2= 2 (0006):	(ha) 4.99 .72	(cms) .136 .070	(hrs) 4.92 4.08	(mm) 27.36 32.86	
ID = 3 (0007):	======================================	.149	4.83	28.05	
NOTE: PEAK FLOWS DO N	NOT INCLUDE	BASEF	LOWS IF	ANY.	
ADD HYD (0009) 1 + 2 = 3 	AREA (ha) 1.59 .63	QPEAK (cms) .392 .047	TPEAF (hrs) 4.00 4.17	C R.V. (mm) 38.35 27.27	
ID = 3 (0009):	2.22	.427	4.00	35.20	
NOTE: PEAK FLOWS DO N	NOT INCLUDE	BASEF	LOWS IF	ANY.	
ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002): + ID2= 2 (0007):	AREA (ha) .74 5.71	QPEAK (cms) .176 .149	TPEAR (hrs) 4.00 4.83	C R.V. (mm) 40.00 28.05	
ID = 3 (0008):	======================================	.241	4.00	29.42	
NOTE: PEAK FLOWS DO N	NOT INCLUDE	BASEF	LOWS IF	ANY.	
ADD HYD (0010) 1 + 2 = 3 ID1= 1 (0003): + ID2= 2 (0009):	AREA (ha) .97 2.22	QPEAK (cms) .228 .427	TPEAF (hrs) 4.00 4.00	C R.V. (mm) 37.34 35.20	

		Conceptual Stormwater Management P Hilan Village Residential Subdivisi 38 Carss Street, Almonte, Onta				ement Plan Subdivision Ite, Ontario	
Project # 210864			21 of 50			Арг	ril 11, 2022
ID = 3 (0010)): 3	.19 .	656	4.00	35.85		
NOTE: PEAK FLOWS	G DO NOT I	INCLUDE	BASEFLOW	S IF ANY			
**************************************	******** {: 5 ** ****						
CHICAGO STORM Ptotal= 93.90 mm	IDF cui	rve para	meters: 2	A=1735.68 B= 6.03 C= .83	38 14 20		
	used in	n: INT	ENSITY =	A / (t	+ B)^C		
	Duratio Storm f Time to	on of st time ste p peak r	orm = 1: p = 10 atio =	2.00 hrs 0.00 min .33			
TIME hrs	RAIN mm/hr 1.52	TIME hrs 3.17	RAIN mm/hr 6.05	TIME hrs 6.17	RAIN mm/hr 4.54	TIME hrs 9.17	RAIN mm/hr 2.12
.33	1.58	3.33	7.54 10.16	6.33	4.25	9.33	2.06
. 67	1.72	3.67	15.97	6.67	3.77	9.67	1.96
.83	$1.80 \\ 1.88$	3.83 4.00	40.65 178.56	6.83 7.00	3.57	9.83	1.91 1.86
1.17	1.98	4.17	54.05	7.17	3.24	10.17	1.82
1.33	2.09 2.21	4.33	27.32 18 24	7.33 7.50	3.10	10.33 10.50	1.78 1 74
1.50	2.21	4.67	13.74	7.67	2.85	10.50	1.70
1.83	2.50	4.83	11.06	7.83	2.74	10.83	1.67
2.00	2.69	5.00	9.29	8.00 8.17	2.64	11.00 11 17	1.63
2.33	2.90	5.33	7.08	8.33	2.35	11.33	1.57
2.50	3.48	5.50	6.35	8.50	2.38	11.50	1.54
2.67	3.88	5.67	5.76	8.67	2.31	11.67	1.51
2.83	4.39 5.07	5.83 6.00	5.28 4.88	8.83 9.00	2.24 2.18	11.83 12.00	1.48 1.46
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area Total In	(ha)= np(%)=	.74 58.00 1	Dir. Con	n.(%)= 4	45.00	
Surface Area	(ba) -	IMPERVIO	US PEI	RVIOUS (:	i)		
Dep. Storage	(mm) =	1.57		4.67			
Average Slope	(%)=	3.00		2.00			
Length Manufactor	(m) =	70.20	:	20.00			
Mannings n NOTE: RAINFA	= All was ti	RANSFORM	ED TO !	.300 5.0 MIN.	TIME STR	EP.	
		TR.	ANSFORME) HYETOGI	RAPH	-	
TIME	RAIN mm/hr	TIME hrs	RAIN mm/hr	TIME hrs	RAIN mm/hr	TIME hrs	RAIN mm/hr

1		_	`	
1		,		۱
L				l
	_	_	1	

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario of 50 April 11, 2022

Project # 210864	22 of 50			Apri	1 11, 202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.083 6.05 3.167 6.05 3.250 7.54 3.333 7.54 3.417 10.16 3.500 10.16 3.583 15.97 3.667 15.97 3.750 40.65 3.833 40.65 3.917 178.56 4.000 178.56 4.000 178.56 4.033 54.05 4.167 54.05 4.250 27.32 4.333 27.32 4.417 18.24 4.583 13.74 4.667 13.74 4.667 13.74 4.667 13.74 4.583 11.06 4.917 9.29 5.000 9.29 5.083 8.02 5.167 8.02 5.250 7.08 5.333 7.08 5.417 6.35 5.583 5.76 5.583 5.76 5.667 5.28 5.833 5.28 5.917 4.88	$\left \begin{array}{c} 6.083\\ 6.167\\ 6.250\\ 6.333\\ 6.417\\ 6.500\\ 6.583\\ 6.667\\ 6.750\\ 6.833\\ 6.917\\ 7.000\\ 7.083\\ 7.167\\ 7.250\\ 7.333\\ 7.167\\ 7.250\\ 7.333\\ 7.417\\ 7.500\\ 7.583\\ 7.667\\ 7.750\\ 7.583\\ 7.667\\ 7.750\\ 7.833\\ 7.917\\ 8.000\\ 8.083\\ 8.167\\ 8.250\\ 8.333\\ 8.417\\ 8.500\\ 8.583\\ 8.417\\ 8.500\\ 8.583\\ 8.667\\ 8.750\\ 8.583\\ 8.667\\ 8.750\\ 8.833\\ 8.917\end{array}\right.$	$\begin{array}{c ccccc} 4.54 \\ 4.54 \\ 4.25 \\ 4.25 \\ 3.99 \\ 3.99 \\ 3.77 \\ 3.77 \\ 3.77 \\ 3.57 \\ 3.57 \\ 3.40 \\ 3.40 \\ 3.24 \\ 3.24 \\ 3.10 \\ 3.24 \\ 3.10 \\ 2.97 \\ 2.85 \\ 2.74 \\ 2.74 \\ 2.74 \\ 2.74 \\ 2.74 \\ 2.55 \\ 2.74 \\ 2.55 \\ 2.55 \\ 2.46 \\ 2.55 \\ 2.46 \\ 2.55 \\ 2.46 \\ 2.38 \\ 2.31 \\ 2.31 \\ 2.24 \\ 2.31 \\ 2.24 \\ 2.18 \\ \end{array}$	9.08 9.17 9.25 9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92 10.00 10.08 10.17 10.25 10.33 10.42 10.50 10.58 10.67 10.75 10.83 10.92 11.00 11.17 11.25 11.33 11.42 11.50 11.58 11.75 11.83 11.92	2.12 2.06 2.01 2.01 1.96 1.91 1.91 1.86 1.82 1.78 1.78 1.74 1.74 1.70 1.67 1.63 1.60 1.67 1.63 1.60 1.57 1.51 1.51 1.48 1.48
3.000 5.07 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = ****** WARNING: STORAGE COEFF. I (i) HORTONS EQUATION SEI Fo (mm/hr)= 76.20 Fc (mm/hr)= 13.20 (ii) TIME STEP (DT) SHOUL THAN THE STORAGE COEF (iii) PEAK FLOW DOES NOT I	6.000 4.88 178.56 2 5.00 1.18 (ii) 5.00 .33 .17 4.00 92.33 93.90 .98 IS SMALLER THAN LECTED FOR PERVI 0 K (0 Cum.Inf. LD BE SMALLER OR EFFICIENT. INCLUDE BASEFLOW	<pre> 9.000 17.14 10.00 5.19 (ii) 10.00 .16 .13 4.08 40.18 93.90 .43 TIME STEP! OUS LOSSES 1/hr)= 4. (mm)= . EQUAL IF ANY.</pre>	2.18 *TOT 4 63 93 : 14 00	12.00 ALS* 299 (iii .00 .65 .90 .68)

(K)	Co	nceptual Stormwate Hilan Village Res 38 Carss Stree	er Management Plan idential Subdivision et, Almonte, Ontario
Project # 210864	23 of 50)	April 11, 2022
CALIB			
NASHYD (0001) Area ID= 1 DT= 5.0 min Ia U.H.	(ha) = 4.99 (mm) = 8.90 Tp(hrs) = .37	Curve Number ((# of Linear Res.	CN)= 81.0 (N)= 3.00
Unit Hyd Qpeak (cms)=	.515		
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	.468 (i) 4.333 49.964 93.900 .532		
(i) PEAK FLOW DOES NOT	INCLUDE BASEFLOW	IF ANY.	
NASHYD (0006) Area ID= 1 DT= 5.0 min Ia U.H.	(ha)= .72 (mm)= 6.90 Tp(hrs)= .17	Curve Number ((# of Linear Res.	CN)= 85.0 (N)= 3.00
Unit Hyd Qpeak (cms)=	.162		
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	.131 (i) 4.083 57.212 93.900 .609		
(1) PEAK FLOW DOES NOT	INCLUDE BASEFLOW	IF ANY.	
CALIB STANDHYD (0003) Area ID= 1 DT= 5.0 min Tota	(ha)= .97 L Imp(%)= 56.00	Dir. Conn.(%)= :	35.00
	IMPERVIOUS P	ERVIOUS (i)	
Surface Area (ha)=	.54	.43	
Average Slope (%)=	1.57	4.67	
Length (m)=	80.40	20.00	
Mannings n =	.013	.300	
<pre>Max.Eff.Inten.(mm/hr)=</pre>	178.56	248.31	
over (min)	5.00	10.00	
Storage Coeff. (min)=	1.28 (11) 5 00	5.79 (11)	
Unit Hyd. peak (cms)=	.33	.15	
		T0	TALS
PEAK FLOW (cms) =	.17	.21	.373 (iii)
TIME TO PEAK (hrs)=	4.00	4.08	1.00 1.0
RUNOFF VOLUME (mm) =	92.33 93 90	42.89 60 93.90 a	3 90 7.19
RUNOFF COEFFICIENT =	.98	.46	.64
***** WARNING: STORAGE COEF	F. IS SMALLER THAN	TIME STEP!	

(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:

(K)	Con	Hilan Village 38 Carss S	Residential Subdivision Street, Almonte, Ontar
Project # 210864	24 of 50		April 11, 202
Fo (mm/hr)= 76.2 Fc (mm/hr)= 13.2 (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT	20 K () 20 Cum.Inf. JLD BE SMALLER OR DEFFICIENT. INCLUDE BASEFLOW	1/hr)= 4.14 (mm)= .00 EQUAL IF ANY.	
CALIB STANDHYD (0004) Area ID= 1 DT= 5.0 min Total :	(ha)= 1.59 Imp(%)= 60.00 1	Dir. Conn.(%))= 34.00
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	IMPERVIOUS PE .95 1.57 3.00 103.00 .013	RVIOUS (i) .64 4.67 2.00 20.00 .300	
<pre>Max.Eff.Inten.(mm/hr)=</pre>	178.56 2 5.00 1.48 (ii) 5.00 .33	79.83 10.00 5.88 (ii) 10.00 .15	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	.27 4.00 92.33 93.90 .98	.35 4.08 45.38 93.90 .48	.616 (iii) 4.00 61.34 93.90 .65
<pre>***** WARNING: STORAGE COEFF. (i) HORTONS EQUATION SI Fo (mm/hr)= 76.2 Fc (mm/hr)= 13.2 (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT</pre>	IS SMALLER THAN ELECTED FOR PERVIC 20 K () 20 Cum.Inf. JLD BE SMALLER OR DEFFICIENT. INCLUDE BASEFLOW	TIME STEP! OUS LOSSES: 1/hr)= 4.14 (mm)= .00 EQUAL IF ANY.	
CALIB NASHYD (0005) Area ID= 1 DT= 5.0 min Ia U.H. Ty	(ha)= .63 (mm)= 8.90 p(hrs)= .17	Curve Number # of Linear F	(CN)= 81.0 Res.(N)= 3.00
Unit Hyd Qpeak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= 4 TOTAL RAINFALL (mm)= 9 RUNOFF COEFFICIENT = (i) PEAK FLOW DOES NOT IN	.142 .095 (i) 4.083 49.793 93.900 .530 NCLUDE BASEFLOW II	F ANY.	

K		Conceptual Stormwater Management I Hilan Village Residential Subdivis					
roject # 210864		25 of 50	38 Carss St	reet, Almonte, Ontari April 11, 202			
				F ,			
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW (cms) .0000 .0500 .1030 .1520 .1960 .2350	STORAGE ((ha.m.) .0000 .0080 .0210 .0390 .0630 .0920	OUTFLOW (cms) .2700 .3010 .3260 .3470 .3640 .3760	STORAGE (ha.m.) .1260 .1650 .2100 .2600 .3160 .3770			
INFLOW : ID= 2 OUTFLOW: ID= 1	ARE. (ha (0001) 4.99 (0011) 4.99	A QPEAK) (cms) 0 .468 0 .215	TPEAK (hrs) 4.33 5.00	R.V. (mm) 49.96 49.96			
P T M	EAK FLOW RED IME SHIFT OF PEA AXIMUM STORAGE	UCTION [Qout K FLOW USED	/Qin](%)= 45 (min)= 40 (ha.m.)=	.92 .00 .0771			
ADD HYD (0007) 1 + 2 = 3 IDl= 1 (00 + ID2= 2 (00	AREA (ha) 11): 4.99	QPEAK TP (cms) (h .215 5.	EAK R.V. urs) (mm) 00 49.96				
+ 1D2- 2 (00		.131 4.					
NOTE: PEAK FLO	WS DO NOT INCLUD	E BASEFLOWS	IF ANY.				
ADD HYD (0009) 1 + 2 = 3 ID1= 1 (00 + ID2= 2 (00)	AREA (ha) 04): 1.59 05): .63	QPEAK TP (cms) (h .616 4. .095 4.	2EAK R.V. 1rs) (mm) 00 61.34 08 49.79				
========= ID = 3 (00	09): 2.22	======================================	00 58.06				
NOTE: PEAK FLO	WS DO NOT INCLUD	E BASEFLOWS	IF ANY.				
ADD HYD (0008) 1 + 2 = 3 TD1= 1 (00	AREA (ha) 02): 74	QPEAK TP (cms) (h .299 4	PEAK R.V. Mrs) (mm)				
+ ID2 = 2 (00)	07): 5.71	.235 4.	83 50.87				
========= ID = 3 (00	08): 6.45	.435 4.	00 52.34				
NOTE: PEAK FLO	WS DO NOT INCLUD	E BASEFLOWS	IF ANY.				

(K)	Conceptual Stormwater Managemen Hilan Village Residential Subdiv 38 Carss Street, Almonte, O						ement Plan Subdivision Ite, Ontario
Project # 210864			26 of 50			Apr	il 11, 2022
ADD HYD (0010) 1 + 2 = 3	۲۵ ()	REA () PEAK (cms)	TPEAK (hrs)	R.V. (mm)		
ID1= 1 (0003 + ID2= 2 (0009): 2	.97 .22	. 373 . 692	4.00 4.00	60.19 58.06		
ID = 3 (0010): 3	.19 1.	.066	4.00	58.71		
NOTE: PEAK FLOWS	DO NOT :	INCLUDE	BASEFLOW	IS IF ANY	Y.		
**************************************	 ******* : 6 ** ******						
CHICAGO STORM Ptotal=106.74 mm	IDF cur used in	rve para	ameters: TENSITY =	A=1735.6 B= 6.0 C= .8 A / (1	588 014 320 t + B)^C		
	Duratio Storm f Time to	on of st time ste ppeak r	corm = 2 ep = 1 catio =	24.00 hrs 0.00 min .33	5		
TIME hrs .17	RAIN mm/hr .83	TIME hrs 6.17	RAIN mm/hr 2.90	TIME hrs 12.17	RAIN mm/hr 2.55	TIME hrs 18.17	RAIN mm/hr 1.19
.33 .50 .67	.85 .86 .88	6.33 6.50 6.67	3.16 3.48 3.88	12.33 12.50 12.67	2.46 2.38 2.31	18.33 18.50 18.67	1.17 1.16 1.14
.83 1.00 1.17	.90 .91 .93	6.83 7.00 7.17	4.39 5.07 6.05	12.83 13.00 13.17	2.24 2.18 2.12	18.83 19.00 19.17	1.13 1.11 1.10
1.33 1.50 1.67	.95 .97 .99	7.33 7.50 7.67	7.54 10.16 15.97	13.33 13.50 13.67	2.06 2.01 1.96	19.33 19.50 19.67	1.09 1.07 1.06
1.83 2.00 2.17	1.02 1.04 1.07	7.83 8.00 8.17	40.65 178.56 54.05	13.83 14.00 14.17	1.91 1.86 1.82	19.83 20.00 20.17	1.05 1.04 1.02
2.33 2.50 2.67	1.09 1.12 1.15	8.33 8.50 8.67	27.32 18.24 13.74	14.33 14.50 14.67	1.78 1.74 1.70	20.33 20.50 20.67	1.01 1.00 .99
2.83 3.00 3.17	1.18 1.21 1.25	8.83 9.00 9.17	11.06 9.29 8.02	14.83 15.00 15.17	1.67 1.63 1.60	20.83 21.00 21.17	.98 .97 .96
3.33 3.50 3.67 3.83	1.29 1.33 1.37 1.42	9.33 9.50 9.67	7.08 6.35 5.76 5.28	15.33 15.50 15.67 15.83	1.57 1.54 1.51 1 48	21.33 21.50 21.67 21.83	.95 .94 .93
4.00 4.17 4.33	1.47 1.52 1.58	10.00 10.17 10.33	4.88 4.54 4.25	16.00 16.17 16.33	1.46 1.43 1.41	22.00 22.17 22.33	.92 .91 .90 .89
4.50 4.67 4.83	1.65 1.72 1.80	10.50 10.67 10.83	3.99 3.77 3.57	16.50 16.67 16.83	1.39 1.36 1.34	22.50 22.67 22.83	. 88 . 88 . 87
5.00 5.17 5.33	1.88 1.98 2.09	11.00 11.17 11.33	3.40 3.24 3.10	17.00 17.17 17.33	1.32 1.30 1.28	23.00 23.17 23.33	.86 .85 .84

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario

Project # 210864		27 of 50		Apri	1 11, 2022
5.50 5.67 5.83 6.00	2.21 11.50 2.34 11.67 2.50 11.83 2.69 12.00	2.97 17.50 2.85 17.67 2.74 17.83 2.64 18.00	1.26 1.24 1.23 1.21	23.50 23.67 23.83 24.00	.84 .83 .82 .81
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area (ha)= Total Imp(%)= !	.74 58.00 Dir. Com	n.(%)= 45	.00	
	IMPERVIO	US PERVIOUS (:	L)		
Surface Area	(ha) = .43	.31			
Dep. Storage	(mm) = 1.57	4.67			
Average Slope	(%)= 3.00	2.00			
Length	(m) = 70.20	20.00			
Mannings n	= .013	.300			
NOTE: RAINF	ALL WAS TRANSFORM	ED TO 5.0 MIN.	TIME STEP		

		TR	ANSFORME	D HYETOG	RAPH	-	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	.83	6.083	2.90	12.083	2.55	18.08	1.19
.167	.83	6.167	2.90	12.167	2.55	18.17	1.19
.250	.85	6.250	3.16	12.250	2.46	18.25	1.17
.333	.85	6.333	3.16	12.333	2.46	18.33	1.17
.417	.86	6.417	3.48	12.417	2.38	18.42	1.16
.500	.86	6.500	3.48	12.500	2.38	18.50	1.16
.583	.88	6.583	3.88	12.583	2.31	18.58	1.14
.667	.88	6.667	3.88	12.667	2.31	18.67	1.14
.750	.90	6.750	4.39	12.750	2.24	18.75	1.13
.833	.90	6.833	4.39	12.833	2.24	18.83	1.13
.917	.91	6.917	5.07	12.917	2.18	18.92	1.11
1.000	.91	7.000	5.07	13.000	2.18	19.00	1.11
1.083	.93	7.083	6.05	13.083	2.12	19.08	1.10
1.167	.93	7.167	6.05	13.167	2.12	19.17	1.10
1.250	.95	7.250	7.54	13.250	2.06	19.25	1.09
1.333	.95	7.333	7.54	13.333	2.06	19.33	1.09
1.417	.97	7.417	10.16	13.417	2.01	19.42	1.07
1.500	.97	7.500	10.16	13.500	2.01	19.50	1.07
1.583	.99	7.583	15.97	13.583	1.96	19.58	1.06
1.667	.99	7.667	15.97	13.667	1.96	19.67	1.06
1.750	1.02	7.750	40.65	13.750	1.91	19.75	1.05
1.833	1.02	7.833	40.66	13.833	1.91	19.83	1.05
1.917	1.04	7.917	178.56	13.917	1.86	19.92	1.04
2.000	1.04	8.000	178.55	14.000	1.86	20.00	1.04
2.083	1.07	8.083	54.05	14.083	1.82	20.08	1.02
2.167	1.07	8.167	54.05	14.167	1.82	20.17	1.02
2.250	1.09	8.250	27.32	14.250	1.78	20.25	1.01
2.333	1.09	8.333	27.32	14.333	1.78	20.33	1.01
2.417	1.12	8.417	18.24	14.417	1.74	20.42	1.00
2.500	1.12	8.500	18.24	14.500	1.74	20.50	1.00
2.583	1.15	8.583	13.74	14.583	1.70	20.58	.99
2.667	1.15	8.667	13.74	14.667	1.70	20.67	.99
2.750	1.18	8.750	11.06	14.750	1.67	20.75	.98
2.833	1.18	8.833	11.06	14.833	1.67	20.83	.98
2.917	1.21	8.917	9.29	14.917	1.63	20.92	.97

1			
1		``	
L			
•	-	1	

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario 28 of 50 April 11, 2022

Project # 210864	28 of	50	,	April	11, 20
Project # 210864 3.000 1.21 3.083 1.25 3.167 1.25 3.250 1.29 3.333 1.29 3.417 1.33 3.500 1.33 3.583 1.37 3.667 1.37 3.750 1.42 3.833 1.42 3.917 1.47 4.000 1.47 4.083 1.52 4.167 1.52 4.250 1.58 4.333 1.58 4.417 1.65 4.500 1.65 4.583 1.72 4.667 1.72 4.750 1.80 4.917 1.88 5.000 1.88 5.083 1.98 5.167 1.98 5.250 2.09 5.333 2.09 5.417 2.21 5.583 2.34	28 of 9.000 9. 9.083 8. 9.167 8. 9.250 7. 9.333 7. 9.417 6. 9.500 6. 9.583 5. 9.667 5. 9.750 5. 9.750 5. 9.750 4. 10.000 4. 10.083 4. 10.167 4. 10.250 4. 10.250 4. 10.333 4. 10.500 3. 10.583 3. 10.667 3. 10.583 3. 10.667 3. 10.750 3. 10.833 3. 10.917 3. 11.000 3. 11.083 3. 11.167 3. 11.250 3. 11.333 3. 11.417 2. 11.500 2. 11.583 2.	50 29 15.000 02 15.083 02 15.167 08 15.250 08 15.333 35 15.417 35 15.667 28 15.750 28 15.750 28 15.633 76 15.633 78 16.000 54 16.167 25 16.333 99 16.417 99 16.500 77 16.667 55 16.333 99 16.417 99 16.500 77 16.667 57 16.750 57 16.750 57 16.750 57 16.750 57 16.750 57 16.750 57 16.750 57 17.500 24 17.167 10 17.333 97 17.500	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	April 1 21.00 21.08 21.17 21.25 21.33 21.42 21.50 21.58 21.67 21.75 21.83 21.92 22.00 22.08 22.17 22.25 22.33 22.42 22.50 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.67 22.58 22.50 23.00 23.08 23.17 23.25 23.33 23.42 23.50 23.58 23.67	11,20 .97 .96 .95 .95 .95 .94 .93 .92 .92 .92 .91 .90 .90 .89 .89 .88 .88 .88 .88 .88 .88 .88 .85 .85 .84 .84 .84 .83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.667 2. 11.750 2. 11.833 2. 11.917 2. 12.000 2.	85 17.667 74 17.750 74 17.833 64 17.917 64 18.000	1.24 1.23 1.23 1.21 1.21	23.67 23.75 23.83 23.92 24.00	.83 .82 .82 .81 .81
<pre>Max.Eff.Inten.(mm/hr)=</pre>	178.56 5.00 1.18 (ii) 5.00 .33 .17 8.00 105.17	219.49 10.00 5.19 (ii) 10.00 .16 .14 8.00 41.78	*TOT# .3 8. 70.	ALS* 303 (iii) .00 .31	
TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = ***** WARNING: STORAGE COEFF.	106.74 .99 IS SMALLER TH	106.74 .39 AN TIME STEP!	106.	.74 .66	
 (i) HORTONS EQUATION SE Fo (mm/hr)= 76.2 Fc (mm/hr)= 13.2 (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT 	LECTED FOR PE 0 K 0 Cum.Inf LD BE SMALLER EFFICIENT. INCLUDE BASEF	RVIOUS LOSSES (1/hr)= 4. . (mm)= . OR EQUAL LOW IF ANY.	: 14 00		

(K)				Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario				
Project # 210864			29 of 5	0		April 11, 2022		
CALIB								
NASHYD (0001) ID= 1 DT= 5.0 min	Area Ia U.H.	(ha)= (mm)= Tp(hrs)=	4.99 8.90 .37	Curve Numbe # of Linea	er (CN)= c Res.(N)=	81.0 3.00		
Unit Hyd Qpeak	(cms)=	.515						
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	.512 (i 8.333 60.802 106.743 .570)					
(i) PEAK FLOW D	OES NOT	INCLUDE BA	SEFLOW	IF ANY.				
CALIB NASHYD (0006) ID= 1 DT= 5.0 min	Area Ia U.H.	(ha)= (mm)= Tp(hrs)=	.72 6.90 .17	Curve Numbe # of Linea	er (CN)= c Res.(N)=	85.0 3.00		
Unit Hyd Qpeak	(cms)=	.162						
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	.141 (i 8.083 68.661 106.743 .643)					
(i) PEAK FLOW D	OES NOT	INCLUDE BA	SEFLOW	IF ANY.				
· · · · · · · · · · · · · · · · · · ·								
CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area Tota	(ha)= 1 Imp(%)=	.97 56.00	Dir. Conn.	(%)= 35.00	0		
		IMPERVIO	US I	PERVIOUS (i)				
Surface Area	(ha)=	.54		.43				
Dep. Storage	(mm)= (운)-	1.57		4.67				
Length	(m) =	80.40		20.00				
Mannings n	=	.013		.300				
Max.Eff.Inten.(over	mm/hr)=	178.56 5.00		249.97 10.00				
Storage Coeff.	(min)=	1.28	(ii)	5.79 (ii)				
Unit Hyd. Tpeak	(min)=	5.00		10.00				
Unit Hyd. peak	(cms) =	. 33		.15	*TUT71.6	*		
PEAK FLOW	(cms)=	.17		.21	.378	(iii)		
TIME TO PEAK	(hrs)=	8.00		8.08	8.00	. ,		
RUNOFF VOLUME	(mm) =	105.17		44.37	65.65			
TOTAL RAINFALL	(mm) =	106.74		106.74	106.74			
RUNOFF COEFFICI	ENT =	.99		.42	.62			
***** WARNING: STORA	GE COEFI	F. IS SMALL	ER THAI	N TIME STEP!				

(K)		(Conceptual Ste Hilan Vill	ormwater Management Plan
•			38 Ca	rss Street, Almonte, Ontario
Project # 210864		30 of	50	April 11, 2022
<pre>(i) HORTONS E(Fo (mm, Fc (mm, (ii) TIME STEP THAN THE S (iii) PEAK FLOW</pre>	QUATION S /hr)= 76. /hr)= 13. (DT) SHO STORAGE C DOES NOT	ELECTED FOR PE 20 K 20 Cum.Inf ULD BE SMALLER OEFFICIENT. INCLUDE BASEF	RVIOUS LOSSE (1/hr)= 4 (mm)= OR EQUAL LOW IF ANY.	S: .14 .00
CALIB STANDHYD (0004) ID= 1 DT= 5.0 min	Area Total	(ha)= 1.59 Imp(%)= 60.00	Dir. Conn	.(%)= 34.00
		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	.95	.64	
Average Slope	(tiuti) = (응) =	3.00	2.00	
Length	(m) =	103.00	20.00	
Mannings n	=	.013	.300	
Max.Eff.Inten.(m	nm/hr)=	178.56	281.11	
over Storage Cooff	(min)	5.00	10.00	<i>\</i>
Unit Hyd. Tpeak	(min)=	5.00	10.00)
Unit Hyd. peak	(cms)=	.33	.15	
PEAK FLOW	(cms)=	27	35	*TOTALS* 621 (iii)
TIME TO PEAK	(hrs)=	8.00	8.08	8.00
RUNOFF VOLUME	(mm) =	105.17	46.53	66.46
RUNOFF COEFFICI	(mm) =	.99	.44	.62
**** WARNING: STORA	GE COEFF.	IS SMALLER TH	AN TIME STEP	!
<pre>(i) HORTONS E(Fo (mm, Fc (mm, (ii) TIME STEP THAN THE S (iii) PEAK FLOW</pre>	QUATION S /hr)= 76. /hr)= 13. (DT) SHO STORAGE C DOES NOT	ELECTED FOR PE 20 K 20 Cum.Inf ULD BE SMALLER OEFFICIENT. INCLUDE BASEF	RVIOUS LOSSE (1/hr)= 4 . (mm)= OR EQUAL LOW IF ANY.	S: .14 .00
CALIB NASHYD (0005) ID= 1 DT= 5.0 min	Area Ia U.H. T	(ha)= .63 (mm)= 8.90 p(hrs)= .17	Curve Num # of Line	ber (CN)= 81.0 ar Res.(N)= 3.00
Unit Hyd Qpeak	(cms)=	.142		
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = 1 ENT =	.105 (i) 8.083 60.594 06.743 .568		
(i) PEAK FLOW DO	DES NOT I	NCLUDE BASEFLO	W IF ANY.	

Conceptual Stormw Hilan Village R						ubdivisi
roject # 210864		31 of '	38 50	Carss St	reet, Almont Apri	te, Ontar 111, 20
		01 01 0				
RESERVOIR (0011) IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STORAGE		FLOW :	STORAGE	
	.0000	.0000		2700	.1260	
	.0500	.0080		3010 3260	.1650	
	.1520	.0390		3470	.2600	
	.1960	.0630		3640 3760	.3160	
	.2350	.0920	••	5700	. 3770	
	ARI (ha	EA Ç a) (PEAK cms)	TPEAK (hrs)	R.V. (mm)	
INFLOW : ID= 2 (000	01) 4.99	90	.512	8.33	60.8	0
OUTFLOW: ID= 1 (001	11) 4.99	90	.227	9.00	60.7	9
PEAK	FLOW REI	DUCTION [Qout/Qin](%)= 44	.32	
TIME miyim	SHIFT OF PEA MUM STORAGE	AK FLOW USED	(r (ha	min)= 40	.00	
		0010	(1101)	, ,		
(0007) מעד ממג (0007)						
	AREA	QPEAK	TPEAK	R.V.		
$\perp + \angle = 3$						
1 + 2 = 3 TD1 = 1 (0011):	(ha) : 499	(cms) 227	(hrs) 9 00	(mm) 60 79		
ID1= 1 (0011): + ID2= 2 (0006):	(ha) : 4.99 : .72	(cms) .227 .141	(hrs) 9.00 8.08	(mm) 60.79 68.66		
I + 2 = 3 ID1 = 1 (0011) + ID2 = 2 (0006) + ID2 = 3 (0007) + ID = 3 (0007) +	(ha) : 4.99 : .72 : .71	(cms) .227 .141 =========	(hrs) 9.00 8.08 ===============================	(mm) 60.79 68.66 ======= 61.79		
IDI = 1 (0011) + ID2 = 2 (0006) + ID2 = 2 (0006) + ID = 3 (0007) + ID = 3 (0	(ha) : 4.99 : .72 : .72 :	(cms) .227 .141 .247	(hrs) 9.00 8.08 8.83	(mm) 60.79 68.66 ====== 61.79		
ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I	(ha) : 4.99 : .72 : .72 :	(cms) .227 .141 .247 .247 DE BASEFL	(hrs) 9.00 8.08 8.83 .0WS IF AN	(mm) 60.79 68.66 ====== 61.79 NY.		
I + Z = 3 ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I	(ha) : 4.99 : .72 : .72 :	(cms) .227 .141 .247 DE BASEFL	(hrs) 9.00 8.08 8.83 .OWS IF AN	(mm) 60.79 68.66 		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ====================================	(ha) : 4.99 : .72 : .72 : .72	(cms) .227 .141 .247 DE BASEFL	(hrs) 9.00 8.08 8.83 .OWS IF AN	(mm) 60.79 68.66 ====== 61.79 VY.		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ============ ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3	(ha) : 4.99 : .72 : .72 :	(cms) .227 .141 .247 DE BASEFL	(hrs) 9.00 8.08 8.83 WWS IF AN TPEAK	(mm) 60.79 68.66 ====== 61.79 NY.		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004)	(ha) : 4.99 : .72 : .72 :	(cms) .227 .141 .247 DE BASEFL 	(hrs) 9.00 8.08 8.83 SOWS IF AN TPEAK (hrs) 8.00	(mm) 60.79 68.66 61.79 JY. R.V. (mm) 66.46		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ============ ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004): + ID2= 2 (0005):	(ha) : 4.99 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63	(cms) .227 .141 .247 DE BASEFL QPEAK (cms) .621 .105	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.08	(mm) 60.79 68.66 61.79 VY. 		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ============ ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004) + ID2= 2 (0005) ========== ID = 3 (0009)	(ha) : 4.99 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : 2.22	(cms) .227 .141 .247 DE BASEFL 	(hrs) 9.00 8.08 8.83 JOWS IF AN TPEAK (hrs) 8.00 8.08 8.00	(mm) 60.79 68.66 ====== 61.79 JY. R.V. (mm) 66.46 60.59 ====== 64.80		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ====================================	(ha) : 4.99 : .72 : 5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : 2.22	(cms) .227 .141 .247 DE BASEFL QPEAK (cms) .621 .105 	(hrs) 9.00 8.08 8.83 WWS IF AN TPEAK (hrs) 8.00 8.08 8.00	(mm) 60.79 68.66 61.79 WY. R.V. (mm) 66.46 60.59 ====== 64.80		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ============ ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004): + ID2= 2 (0005): ========== ID = 3 (0009): NOTE: PEAK FLOWS I	(ha) : 4.99 : .72 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : .2.22 DO NOT INCLUI	(cms) .227 .141 .247 DE BASEFL QPEAK (cms) .621 .105 .706 DE BASEFL	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.08 8.00 8.00	(mm) 60.79 68.66 61.79 VY. R.V. (mm) 66.46 60.59 ===== 64.80 VY.		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004): + ID2= 2 (0005): ========== ID = 3 (0009): NOTE: PEAK FLOWS I	(ha) : 4.99 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : 2.22 DO NOT INCLUI	(cms) .227 .141 .247 DE BASEFL QPEAK (cms) .621 .105 .706 DE BASEFL	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.08 8.00 0WS IF AN	(mm) 60.79 68.66 61.79 JY. R.V. (mm) 66.46 60.59 64.80 JY.		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004) + ID2= 2 (0005) ========= ID = 3 (0009) NOTE: PEAK FLOWS I NOTE: PEAK FLOWS I	(ha) : 4.99 : .72 : 5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : 2.22 DO NOT INCLUI	(cms) .227 .141 .247 DE BASEFL .247 DE BASEFL .621 .105 .706 DE BASEFL	(hrs) 9.00 8.08 8.83 JOWS IF AN TPEAK (hrs) 8.00 8.08 8.00 JOWS IF AN	(mm) 60.79 68.66 		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004): + ID2= 2 (0005): ========== ID = 3 (0009): NOTE: PEAK FLOWS I NOTE: PEAK FLOWS I ADD HYD (0008) 1 + 2 = 3	(ha) : 4.99 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : 2.22 DO NOT INCLUI AREA	(cms) .227 .141 .247 DE BASEFL .247 DE BASEFL .621 .105 .706 DE BASEFL .706	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.08 8.00 OWS IF AN OWS IF AN	(mm) 60.79 68.66 61.79 NY. R.V. (mm) 66.46 60.59 64.80 NY. R.V.		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) =========== ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004) + ID2= 2 (0005) ========== ID = 3 (0009) NOTE: PEAK FLOWS I D = 3 (0009) NOTE: PEAK FLOWS I ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0004) I + 2 = 3 ID1= 1 ((ha) : 4.99 : .72 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : .2.22 DO NOT INCLUI AREA (ha) :	(cms) .227 .141 .247 DE BASEFL .247 DE BASEFL .05 .621 .105 .706 DE BASEFL .706 DE BASEFL .05	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.08 8.00 SOWS IF AN COWS IF AN TPEAK (hrs)	(mm) 60.79 68.66 61.79 NY. R.V. (mm) 66.46 60.59 64.80 NY. R.V. (mm)		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ============ ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004): + ID2= 2 (0007): NOTE: PEAK FLOWS I ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002): + ID2= 2 (0007): + ID2= 2 (0007): 	(ha) (ha) (ha) (ha) (ha) (72) (7))	(cms) .227 .141 .247 DE BASEFL .247 DE BASEFL .05 .621 .105 .706 DE BASEFL .706 DE BASEFL .303 .247	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.00 OWS IF AN OWS IF AN TPEAK (hrs) 8.00 8.00 SOWS IF AN	(mm) 60.79 68.66 61.79 VY. R.V. (mm) 66.46 60.59 		
I + 2 = 3 ID1= 1 (0011) + ID2= 2 (0006) ============ ID = 3 (0007) NOTE: PEAK FLOWS I ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0004) + ID2= 2 (0009) NOTE: PEAK FLOWS I ID = 3 (0009) NOTE: PEAK FLOWS I 	(ha) : 4.99 : .72 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : 2.22 DO NOT INCLUI AREA (ha) : .74 : .74 : .74	(cms) .227 .141 .247 DE BASEFL .247 DE BASEFL .05 .621 .105 .706 DE BASEFL .706 DE BASEFL 	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.08 8.00 SOWS IF AN COWS IF AN TPEAK (hrs) 8.00 8.08 SET STREAM (hrs) 8.00 8.83 SET STREAM	(mm) 60.79 68.66 ====== 61.79 WY. R.V. (mm) 66.46 60.59 ===== 64.80 WY. R.V. (mm) 70.31 61.79 ====== 62.76		
I + 2 = 3 $ID1 = 1 (0011) + ID2 = 2 (0006) =$ $ID = 3 (0007)$ $NOTE: PEAK FLOWS I$ $ID1 = 1 (0004) +$ $ID2 = 2 (0005) =$ $ID = 3 (0009) =$ $ID = 3 (0009) =$ $NOTE: PEAK FLOWS I$ $ID = 3 (0008) =$ $ID1 = 1 (0002) =$ $ID1 = 1 (0002) =$ $ID1 = 3 (0008) =$ $ID = 3 (0008) =$	(ha) : 4.99 : .72 : .72 : .5.71 DO NOT INCLUI AREA (ha) : 1.59 : .63 : .2.22 DO NOT INCLUI AREA (ha) : .74 : .74 : .74 : .74 : .74 : .74	(cms) .227 .141 .247 DE BASEFL QPEAK (cms) .621 .105 .706 DE BASEFL .247 QPEAK (cms) .303 .247 .303 .247	(hrs) 9.00 8.08 8.83 OWS IF AN TPEAK (hrs) 8.00 8.00 OWS IF AN TPEAK (hrs) 8.00 SOWS IF AN TPEAK (hrs) 8.00 8.3 TPEAK	(mm) 60.79 68.66 61.79 WY. R.V. (mm) 66.46 60.59 64.80 WY. R.V. (mm) 70.31 61.79 62.76		

(K)	Conceptual Stormwater Management Hilan Village Residential Subdivi						ement Plan Subdivision
Project # 210864			32 of 50	38 (Carss Stree	et, Almon	ite, Ontario
-10ject # 210804			52 01 50			Api	
1 + 2 = 3	A (]	REA Q ha) (PEAK cms)	TPEAK (hrs)	R.V. (mm)		
ID1= 1 (000 + ID2= 2 (000)3):)9): 2	.97 . .22 .	378 706	8.00 8.00	65.65 64.80		
ID = 3 (00)	LO): 3	.19 1.	======= 085	8.00	====== 65.06		
NOTE: PEAK FLOW	NS DO NOT	INCLUDE	BASEFLO	WS IF AN	Y.		

** SIMULATION NUMBE *****	ER: 7 **						
READ STORM	Filena	me: G:\P 2108	rojects 64 - We	\2021\ stview P:	rojects In	nc 38	Carss St
Ptotal= 56.41 mm	Commen	\Sto ts: SCS	rm and II 12hr	Sewer Dea 5yr Cara	sign\Desig ss Street	gn Storm	Text Fil
TIMH	E RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs .5(s mm/hr) 1.69	hrs 3.50	mm/hr 2.26	hrs	mm/hr 12.30	hrs 9.50	mm/hr 1.69
1.00) .79	4.00	2.26	7.00	5.41	10.00	1.35
1.50	1.47	4.50	3.05	7.50	3.61	10.50	1.92
2.00) 1.47	5.00	3.84	8.00	3.16	11.00	1.24
2.50) 1.92) 1.69	5.50 6.00	6.09 48.28	8.50 9.00	2.48 2.59	11.50 12.00	1.13 1.13
CALIB							
STANDHYD (0002) ID= 1 DT= 5.0 min	Area Total I	(ha)= mp(%)=	.74 58.00	Dir. Co	nn.(%)=	45.00	
	(1)	IMPERVIO	US PI	ERVIOUS	(i)		
Dep Storage	(na) = (mm) =	.43		.31 4 67			
Average Slope	(8)=	3.00		2.00			
Length	(m) =	70.20		20.00			
Mannings n	=	.013		.300			
NOTE: RAINE	FALL WAS T	RANSFORM	ED TO	5.0 MIN	. TIME STR	EP.	
		TR	ANSFORM	ED HYETO	GRAPH	-	
	E RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	s mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	5 1.69 7 1.60	3.083 3.167	2.26	6.083	12.30	9.08 0.17	1.69 1.60
.10	, 1.09	3,250	2.20		12.30 12.30	2.1/	1,69
.333	3 1.69	3.333	2.20	6.333	12.30	9.33	1.69
.41	1.69	3.417	2.26	6.417	12.30	9.42	1.69
.500	1.69	3.500	2.26	6.500	12.30	9.50	1.69
.583	3.79	3.583	2.26	6.583	5.41	9.58	1.35

/	-	-	
1			
•		_	

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario 33 of 50 April 11, 2022

Project # 210864	33 of 50)	April 11, 2022
Project # 210804 $.667$.79.750.79.833.79.917.791.000.791.0831.471.1671.471.2501.471.3331.471.4171.471.5001.471.5831.471.6671.471.7501.471.8331.471.9171.472.0001.472.0001.472.0331.922.1671.922.2501.922.3331.922.4171.922.5001.922.5831.692.6671.692.7501.692.9171.693.0001.69	$\begin{array}{c} 3.667 & 2.26 \\ 3.750 & 2.26 \\ 3.833 & 2.26 \\ 3.917 & 2.26 \\ 4.000 & 2.26 \\ 4.083 & 3.05 \\ 4.167 & 3.05 \\ 4.250 & 3.05 \\ 4.333 & 3.05 \\ 4.417 & 3.05 \\ 4.583 & 3.84 \\ 4.667 & 3.84 \\ 4.667 & 3.84 \\ 4.667 & 3.84 \\ 4.917 & 3.84 \\ 5.000 & 3.84 \\ 4.917 & 3.84 \\ 5.083 & 6.09 \\ 5.167 & 6.09 \\ 5.250 & 6.09 \\ 5.250 & 6.09 \\ 5.333 & 6.09 \\ 5.417 & 6.09 \\ 5.583 & 48.28 \\ 5.667 & 48.28 \\ 5.667 & 48.28 \\ 5.750 & 48.28 \\ 5.833 & 48.28 \\ 5.917 & 48.28 \\ 5.917 & 48.28 \\ 6.000 & 48.28 \\ \end{array}$	6.667 5.4 6.750 5.4 6.833 5.4 6.917 5.4 7.000 5.4 7.083 3.6 7.167 3.6 7.250 3.6 7.333 3.6 7.417 3.6 7.500 3.6 7.583 3.1 7.667 3.1 7.750 3.1 7.917 3.1 8.083 2.4 8.167 2.4 8.250 2.4 8.333 2.4 8.417 2.4 8.583 2.5 8.667 2.5 8.750 2.5 8.833 2.5 8.917 2.5 9.000 2.5	April 11, 202. $11 9.67 1.35$ $11 9.75 1.35$ $11 9.75 1.35$ $11 9.83 1.35$ $11 9.92 1.35$ $11 10.00 1.35$ $11 10.00 1.35$ $11 10.08 1.92$ $11 10.25 1.92$ $11 10.42 1.92$ $11 10.50 1.92$ $11 10.50 1.92$ $11 10.50 1.92$ $11 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.92$ $12 10.50 1.24$ $12 10.92 1.24$ $12 10.92 1.24$ $11 1.7 1.13$ $11 1.7 1.13$ $12 11.58 1.13$ $11 1.58 1.13$ $11 1.58 1.13$ $11 1.58 1.13$ $11 1.58 1.13$ $11 1.58 1.13$ $11 1.75 1.13$ $11 1.92 1.13$ $11 1.92 1.13$ $11 1.92 1.13$ $11 1.200 1.13$
<pre>Max.Eff.Inten.(mm/hr)=</pre>	48.28 5.00 1.99 (ii) 5.00 .31 .04 5.92 54.84 56.41	47.76 10.00 8.97 (ii) 10.00 .12 .04 6.00 14.38 56.41	TOTALS* .080 (iii) 6.00 32.58 56.41
RUNOFF COEFFICIENT = ***** WARNING: STORAGE COEFF. I (i) HORTONS EQUATION SEI FO (mm/hr)= 76.20 FC (mm/hr)= 13.20 (ii) TIME STEP (DT) SHOUL THAN THE STORAGE COE (iii) PEAK FLOW DOES NOT I	.97 IS SMALLER THAN LECTED FOR PERV) K Cum.Inf. LD BE SMALLER O EFFICIENT. INCLUDE BASEFLO	.25 TIME STEP! IOUS LOSSES: (1/hr)= 4.14 (mm)= .00 R EQUAL W IF ANY.	.58
CALIB NASHYD (0001) Area ID= 1 DT= 5.0 min Ia U.H. Tp(Unit Hyd Qpeak (cms)=	(ha)= 4.99 (mm)= 8.90 (hrs)= .37 .515	Curve Number # of Linear Re	(CN)= 81.0 es.(N)= 3.00

(K)	Co	onceptual Stormw Hilan Village R 38 Carss St	ater Management Plan esidential Subdivision reet, Almonte, Ontario
Project # 210864	34 of 5	0	April 11, 2022
PEAK FLOW (cms)= .1 TIME TO PEAK (hrs)= 6.2 RUNOFF VOLUME (mm)= 21.0 TOTAL RAINFALL (mm)= 56.4 RUNOFF COEFFICIENT = .3 (i) PEAK FLOW DOES NOT INCLU	77 (i) 50 74 10 74 DE BASEFLOW	IF ANY.	
CALIB NASHYD (0006) Area (h ID= 1 DT= 5.0 min Ia (m U.H. Tp(hr	aa)= .72 m)= 6.90 s)= .17	Curve Number # of Linear Re	(CN)= 85.0 s.(N)= 3.00
Unit Hyd Qpeak (cms)= .1	62		
PEAK FLOW (cms)= .0 TIME TO PEAK (hrs)= 6.0 RUNOFF VOLUME (mm)= 25.8 TOTAL RAINFALL (mm)= 56.4 RUNOFF COEFFICIENT = .4	48 (i) 00 91 10 59		
(i) PEAK FLOW DOES NOT INCLU	DE BASEFLOW	IF ANY.	
CALIB STANDHYD (0003) Area (h ID= 1 DT= 5.0 min Total Imp(a)= .97 %)= 56.00	Dir. Conn.(%)=	35.00
IMP	ERVIOUS I	PERVIOUS (i)	
Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n=	.54 1.57 3.00 80.40 .013	.43 4.67 2.00 20.00 .300	
Max.Eff.Inten.(mm/hr)= over (min)	48.28 5.00	56.59 10.00	
Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	2.16 (ii) 5.00 .31	8.68 (ii) 10.00 .12	
PEAK FLOW (cms)=	.05	. 06	TOTALS*
TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	5.92 54.84 56.41 .97	6.00 16.84 56.41 .30	6.00 30.14 56.41 .53
***** WARNING: STORAGE COEFF. IS	SMALLER THAN	N TIME STEP!	
 (i) HORTONS EQUATION SELEC FO (mm/hr)= 76.20 FC (mm/hr)= 13.20 (ii) TIME STEP (DT) SHOULD THAN THE STORAGE COEFF (iii) PEAK FLOW DOES NOT INC 	TED FOR PERV K Cum.Inf. BE SMALLER (ICIENT. LUDE BASEFL(VIOUS LOSSES: (1/hr)= 4.14 (mm)= .00 DR EQUAL DW IF ANY.	

CALIB STANDHYD (0004) | Area (ha)= 1.59 ID= 1 DT= 5.0 min | Total Imp(%)= 60.00 Dir. Conn.(%)= 34.00 ------IMPERVIOUS PERVIOUS (i)

 Surface Area
 (ha)=
 .95
 .64

 Dep. Storage
 (mm)=
 1.57
 4.67

 Average Slope
 (%)=
 3.00
 2.00

 Length
 (m)=
 103.00
 20.00

 Mannings n
 =
 .013
 .300

 Max.Eff.Inten.(mm/hr)=
over (min)48.28
5.0065.51
10.00Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=2.50 (ii)
5.008.65 (ii)
10.00 *TOTALS*

 PEAK FLOW
 (cms) =
 .07
 .11

 TIME TO PEAK
 (hrs) =
 6.00
 6.00

 RUNOFF VOLUME
 (mm) =
 54.84
 18.71

 TOTAL RAINFALL
 (mm) =
 56.41
 56.41

 RUNOFF COEFFICIENT
 =
 .97
 .33

 .178 (iii) 6.00 30.99 56.41 .55 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= .00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ _____ CALIB NASHYD (0005) Area (ha)= .63 Curve Number (CN)= 81.0 |ID= 1 DT= 5.0 min | Ia (mm)= 8.90 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= .17 Unit Hyd Qpeak (cms)= .142 PEAK FLOW (cms)= .033 (i) TIME TO PEAK (hrs) = 6.000 RUNOFF VOLUME (mm) = 21.002 TOTAL RAINFALL (mm) = 56.410 RUNOFF COEFFICIENT = .372 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ _____ | RESERVOIR (0011) | IN= 2---> OUT= 1 OUTFLOWSTORAGEOUTFLOWSTORAGE(cms)(ha.m.)(cms)(ha.m.).0000.0000.2700.1260.0500.0080.3010.1650.1030.0210.3260.2100.1520.0390.3470.2600 DT= 5.0 min _____

(K)			(Conceptua Hilan 3	al Stormwat Village Res 8 Carss Stre	er Management Plan sidential Subdivision et, Almonte, Ontario
Project # 210864			36 of	50		April 11, 2022
		.1960 .2350	.0630 .0920		.3640 .3760	.3160 .3770
INFLOW : ID= 2 OUTFLOW: ID= 1	(0001) (0011)	AREA (ha) 4.990 4.990)	QPEAK (cms) .177 .112	TPEAK (hrs) 6.25 6.75	R.V. (mm) 21.07 21.07
	PEAK F TIME SHI MAXIMUM	LOW REDU FT OF PEAF STORAGE	JCTION FLOW USED	[Qout/Qi	n](%)= 63.4 (min)= 30.0 a.m.)= .0	42 00 0245
 ADD HYD (0007)						
1 + 2 = 3		AREA	QPEAK	TPEAK	R.V.	
ID1= 1 (0	011):	(na) 4.99	(cms) .112	(nrs) 6.75	(mm) 21.07	
+ ID2= 2 (C	006):	.72	.048	6.00	25.89	
ID = 3 (C	007):	5.71 5.71	.125	6.58	21.68	
NOTE: PEAK FI	OWS DO N	OT INCLUDE	BASEF	LOWS IF	ANY.	
ADD HYD (0009) 1 + 2 = 3		AREA (ha)	QPEAK (cms)	TPEAK	R.V. (mm)	
ID1= 1 (0	004):	1.59	.178	6.00	30.99	
+ 1D2= 2 (0 ========	005): ========	.63 =======	.033	6.00	21.00 ======	
ID = 3 (C	009):	2.22	.212	6.00	28.16	
NOTE: PEAK FI	OWS DO N	OT INCLUDE	BASEF	LOWS IF	ANY.	
ADD HYD (0008)	-					
1 + 2 = 3	 	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)	
ID1= 1 (0	002):	.74	.080	6.00	32.58	
+ ID2= 2 (C ========	(007): =========	5.71 ========	.125 ======	6.58 ======	21.68 ======	
ID = 3 (C	008):	6.45	.170	6.00	22.93	
NOTE: PEAK FI	OWS DO N	OT INCLUDE	BASEF	LOWS IF	ANY.	
ADD HYD (0010) 1 + 2 = 3 ID1= 1 (0	003):	AREA (ha) .97	QPEAK (cms) .106	TPEAK (hrs) 6.00	R.V. (mm) 30.14	
+ ID2= 2 (C	009):	2.22	.212	6.00	28.16 =======	

(K)		Conceptual Stormwater Management P Hilan Village Residential Subdivisi 38 Carss Street, Almonte, Onta				
Project # 210864	37 of 50				April 11, 2022	
ID = 3 (0010):	3.19	.318	6.00	28.76		

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

-								
	READ STORM	Filenar	me: G:\I 2108	Projects∖ 864 - Wes	2021\ tview Pro	ojects In	nc 38	Carss St
ĺ	i i		\Sto	orm and S	ewer Desi	Ign\Desig	gn Storm	Text Fil
	Ptotal= 94.40 mm	Comment	ts: SCS	II 12hr	100yr Car	ss Stree	et	
	TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
	hrs	s mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
	.50	2.83	3.50	3.78	6.50	20.58	9.50	2.83
	1.00	1.32	4.00	3.78	7.00	9.06	10.00	2.27
	1.50	2.45	4.50	5.10	7.50	6.04	10.50	3.21
	2.00	2.45	5.00	6.42	8.00	5.29	11.00	2.08
	2.50	3.21	5.50	10.20	8.50	4.15	11.50	1.89
	3.00	2.83	6.00	80.81	9.00	4.34	12.00	1.89
_								
	CALIB	Area	(ha)=	74				
	ID= 1 DT= 5.0 min	Total In	mp(%)=	58.00	Dir. Conr	n.(%)=	45.00	
		:	IMPERVIC	DUS PE	RVIOUS (j	L)		
	Surface Area	(ha)=	.43	3	.31			

Den Storage	(mm) -	1 57	4 67
Dep. Storage	((((()) –	1.57	4.07
Average Slope	(🗞) =	3.00	2.00
Length	(m) =	70.20	20.00
Mannings n	=	.013	.300

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED	HYETOG	RAPH	-	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	2.83	3.083	3.78	6.083	20.58	9.08	2.83
.167	2.83	3.167	3.78	6.167	20.58	9.17	2.83
.250	2.83	3.250	3.78	6.250	20.58	9.25	2.83
.333	2.83	3.333	3.78	6.333	20.58	9.33	2.83
.417	2.83	3.417	3.78	6.417	20.58	9.42	2.83
.500	2.83	3.500	3.78	6.500	20.58	9.50	2.83
.583	1.32	3.583	3.78	6.583	9.06	9.58	2.27
.667	1.32	3.667	3.78	6.667	9.06	9.67	2.27
.750	1.32	3.750	3.78	6.750	9.06	9.75	2.27
.833	1.32	3.833	3.78	6.833	9.06	9.83	2.27
.917	1.32	3.917	3.78	6.917	9.06	9.92	2.27
1.000	1.32	4.000	3.78	7.000	9.06	10.00	2.27
1.083	2.45	4.083	5.10	7.083	6.04	10.08	3.21
1.167	2.45	4.167	5.10	7.167	6.04	10.17	3.21
1.250	2.45	4.250	5.10	7.250	6.04	10.25	3.21

1	-	_	
1			۱
L		⊾	
	_		

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario of 50 April 11, 2022

Project # 210864	38 of 50	50 Cuiss 51	April 11, 2022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 4.333 & 5.10 \\ 4.417 & 5.10 \\ 4.500 & 5.10 \\ 4.583 & 6.42 \\ 4.667 & 6.42 \\ 4.750 & 6.42 \\ 4.833 & 6.42 \\ 4.917 & 6.42 \\ 5.000 & 6.42 \\ 5.083 & 10.20 \\ 5.167 & 10.20 \\ 5.250 & 10.20 \\ 5.333 & 10.20 \\ 5.333 & 10.20 \\ 5.417 & 10.20 \\ 5.500 & 10.20 \\ 5.583 & 80.81 \\ 5.667 & 80.81 \\ 5.750 & 80.81 \\ 5.833 & 80.81 \\ 5.917 & 80.81 \\ 5.917 & 80.81 \\ \end{array}$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 10.33 3.21 4 10.42 3.21 4 10.50 3.21 9 10.58 2.08 9 10.67 2.08 9 10.75 2.08 9 10.92 2.08 9 10.92 2.08 9 11.00 2.08 9 11.25 1.89 5 11.17 1.89 5 11.42 1.89 5 11.50 1.89 4 11.58 1.89 4 11.75 1.89 4 11.75 1.89 4 11.92 1.89 4 11.92 1.89
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	80.81 5.00 1.62 (ii) 5.00 .32 .07 5.92 92.83 94.40 .98	92.48 10.00 6.98 (ii) 10.00 .14 *' .08 6.00 36.91 94.40 .39	TOTALS* .152 (iii) 6.00 62.07 94.40 .66
<pre>***** WARNING: STORAGE COEFF. I (i) HORTONS EQUATION SEL Fo (mm/hr)= 76.20 Fc (mm/hr)= 13.20 (ii) TIME STEP (DT) SHOUL THAN THE STORAGE COE (iii) PEAK FLOW DOES NOT I </pre>	S SMALLER THAN ECTED FOR PERVI K (Cum.Inf. D BE SMALLER OR FFICIENT. NCLUDE BASEFLOW	TIME STEP! OUS LOSSES: 1/hr)= 4.14 (mm)= .00 EQUAL IF ANY.	
NASHYD (0001) Area ID= 1 DT= 5.0 min Ia U.H. Tp(Unit Hyd Qpeak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= 6 RUNOFF VOLUME (mm)= 50 TOTAL RAINFALL (mm)= 94 RUNOFF COEFFICIENT = (i) PEAK FLOW DOES NOT INC	(ha) = 4.99 (mm) = 8.90 hrs) = .37 .515 .444 (i) .167 .383 .405 .534	Curve Number # of Linear Re: F ANY	(CN)= 81.0 5.(N)= 3.00

Project # 210864	40 c	of 50	April 11, 2022
Average Slope(%)=Length(m)=Mannings n=	3.00 103.00 .013	2.00 20.00 .300	
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)=	80.81 5.00 2.04 (ii	120.11 10.00 .) 6.86 (ii)	
Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.00 .31	10.00 .14	*TOTALS*
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	.12 5.92 92.83 94.40 .98	.21 6.00 41.35 94.40 .44	.328 (iii) 6.00 58.85 94.40 .62
***** WARNING: STORAGE COEF	F. IS SMALLER I	HAN TIME STEP!	
<pre>(i) HORTONS EQUATION Fo (mm/hr)= 7 Fc (mm/hr)= 1 (ii) TIME STEP (DT) S: THAN THE STORAGE (iii) PEAK FLOW DOES N</pre>	SELECTED FOR F 6.20 3.20 Cum.Ir HOULD BE SMALLE COEFFICIENT. DT INCLUDE BASE	ERVIOUS LOSSES K (1/hr)= 4. ff. (mm)= . R OR EQUAL FLOW IF ANY.	: 14 00
CALIB NASHYD (0005) Area ID= 1 DT= 5.0 min Ia U.H.	(ha)= .6 (mm)= 8.9 Tp(hrs)= .1	3 Curve Numbo 0 # of Linea: 7	er (CN)= 81.0 r Res.(N)= 3.00
Unit Hyd Qpeak (cms)=	.142		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	.083 (i) 6.000 50.211 94.405 .532		
(i) PEAK FLOW DOES NOT	INCLUDE BASEFI	OW IF ANY.	
RESERVOIR (0011) IN= 2> OUT= 1			
DT= 5.0 min OU (1	IFLOW STORAG cms) (ha.m. .0000 .000 .0500 .008 .1030 .021 .1520 .039 .1960 .063 .2350 .092	E OUTFLOW) (cms) 10 .2700 10 .3010 10 .3260 10 .3470 10 .3640 10 .3760	STORAGE (ha.m.) .1260 .1650 .2100 .2600 .3160 .3770
INFLOW : ID= 2 (0001)	AREA (ha) 4.990	QPEAK T1 (cms) (1 .444 (PEAK R.V. hrs) (mm) 5.17 50.38

Conceptual Stormwater Management Plan Hilan Village Residential Subdivision 38 Carss Street, Almonte, Ontario Project # 210864 41 of 50 April 11, 2022 PEAK FLOW REDUCTION [Qout/Qin](%)= 48.67 TIME SHIFT OF PEAK FLOW $(\min) = 45.00$ MAXIMUM STORAGE USED (ha.m.)= .0782 _____ _____ ADD HYD (0007) 1 + 2 = 3AREA QPEAK TPEAK R.V. ----- (ha) (cms) (hrs) (mm) ID1= 1 (0011): 4.99 .216 6.92 50.38 + ID2= 2 (0006): .72 .109 6.00 57.66 _____ (mm) ID = 3 (0007): 5.71 .240 6.58 51.29 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0009) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1 + 2 = 3

 ID1= 1 (0004):
 1.59
 .328
 6.00
 58.85

 + ID2= 2 (0005):
 .63
 .083
 6.00
 50.21

 _____ ID = 3 (0009): 2.22 .410 6.00 56.40 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ------ADD HYD (0008) $\begin{vmatrix} ADD & IIID \\ 1 + 2 = 3 \end{vmatrix}$ AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) _____ ID1= 1 (0002): .74 .152 6.00 62.07 + ID2= 2 (0007): 5.71 .240 6.58 51.29 ------ID = 3 (0008): 6.45 .366 6.00 52.53 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0010) 1 + 2 = 3AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) ID1=1(0003):.97.1986.0057.79+ ID2=2(0009):2.22.4106.0056.40 ID = 3 (0010): 3.19 .609 6.00 56.82 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ** SIMULATION NUMBER: 9 ** ******

READ STORM	Filenar	ne: G:\P: 21086	rojects\:	2021\ tview Pro	piects Tr	uc - 38	Carss St
 Ptotal= 80.57 mm	Comment	\Stor	rm and Se wa Aug 4	ewer Desi 1988	ign\Desig	gn Storm	Text Fil
			2				
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.08	.10	1.58	27.50	3.08	14.00	4.58	.20
.17	.10	1.67	62.50	3.17	22.20	4.67	.20
.25	.00	1.75	31.80	3.25	21.80	4.75	.20
.33	3.70	1.83	79.80	3.33	1.40	4.83	.20
.42	6.20	1.92	67.50	3.42	.20	4.92	.20
.50	101.50	2.00	156.20	3.50	.20	5.00	2.90
.58	15.20	2.08	5.10	3.58	.20	5.08	7.80
.67	29.30		.20		.20	5.1/	10.00
./5	1 50		.20		.20	5.45 E 22	6.3U E 10
.03	1.50		.20		.20	5.33	5.10
.92	I.70 E.40		.20		.20	5.42	9.60
1.00	24 60	2.50	.20	4.00	20	5 58	1 70
1 17	24.00	2.50	20	4 17	20	5.50	1.70
1 25	34 90	2.07	20	4 25	20	5 75	.00
1 33	10 20	2.83	20	4 33	20	5.75	
1.42	27.10	2.92	.20	4.42	.20		
1.50	104.40	3.00	12.80	4.50	.20		
		I		1			
CALIB	-	(1)					
I STANDHYD (0002)	Area Matal Tr	(na)=	./4		(2.) _ /		
	IOLAI IN	up(종)= :	58.00 1	Dir. Com	1.(3) = 4	15.00	
	-	IMPERVIO	IS PEI	RVIOUS (†)		
Surface Area	(ha)=	. 43	50 10	. 31	- /		
Dep. Storage	(mm) =	1.57		4.67			
Average Slope	(%)=	3.00		2.00			
Length	(m) =	70.20	:	20.00			
Mannings n	=	.013		.300			
Max.Eff.Inten.(m	m/hr)=	156.20	1	33.05			
over	(min)	5.00	:	10.00			
Storage Coeff.	(min)=	1.24	(ii)	5.47 (ii	L)		
Unit Hyd. Tpeak	(min)=	5.00		10.00			
Unit Hyd. peak	(cms)=	.33		.16			
	<i>/ \</i>			1.0	*TOI	ALS*	,
PEAK FLOW	(Cms) =	.14		.10		.230 (111	-)
TIME TO PEAK	(11rs) =	2.00		2.08		4.UU 7 E1	
KUNUFF VULUME	(1000) =	/9.00 00 E7		37.74 00 57	5.	/.⊃⊥) ⊑7	
TOTAL KAINFALL	(1111) =	\ C. Vo 00	i	50.57	80	71. 71	
KONOFF COEFFICIES	мт —	.90		. 50		• / ⊥	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORTONS	EQUATIO	N SELECTEI	D FOR	PERV	JIOUS	LOS	SES:
	Fo (mm/hr)=	76.20		Κ	(1/h	<u>(</u>) =	4.14
	Fc (mm/hr)=	13.20	Cum.	Inf.	(mr	n)=	.00

Project # 210864

(K)			C	onceptual Sto Hilan Villa 38 Car	ormwater Management Plan age Residential Subdivision ss Street, Almonte, Ontario
Project # 210864			43 of 5	50	April 11, 2022
(ii) TIME STEP THAN THE (iii) PEAK FLOW	(DT) SH STORAGE DOES NO	OULD BE S COEFFICIE T INCLUDE	MALLER NT. BASEFL	OR EQUAL OW IF ANY.	
CALIB NASHYD (0001)	Area	(ha)=	4.99	Curve Numb	per (CN)= 81.0
ID= 1 DT= 5.0 min	Ia U.H.	(mm)= Tp(hrs)=	8.90 .37	# of Linea	r Res.(N)= 3.00
Unit Hyd Qpeak	(cms)=	.515			
PEAK FLOW TIME TO PEAK RUNOFF VOLUME	(cms)= (hrs)= (mm)=	.482 (2.167 39.126	i)		
TOTAL RAINFALL RUNOFF COEFFICI	(mm) = ENT =	80.567 .486			
(i) PEAK FLOW D	OES NOT	INCLUDE B	ASEFLOW	IF ANY.	
CALIB	_	(1)		~	(777) 05 0
NASHYD (0006) ID= 1 DT= 5.0 min 	Area Ia U.H.	(ha)= (mm)= Tp(hrs)=	.72 6.90 .17	Curve Numb # of Linea	er (CN)= 85.0 nr Res.(N)= 3.00
Unit Hyd Qpeak	(cms)=	.162			
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	.119 (2.083 45.635 80.567 .566	i)		
(i) PEAK FLOW D	OES NOT	INCLUDE B	ASEFLOW	IF ANY.	
CALIB					
STANDHYD (0003) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	.97 56.00	Dir. Conn.	(%)= 35.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	.5	4	.43	
Dep. Storage	(mm)=	1.5	/	4.6/	
Length	(m) =	80.4	0	20.00	
Mannings n	=	.01	3	.300	
Max.Eff.Inten.(mm/hr)=	156.2	0	151.86	
over	(min)	5.0	0	10.00	
Storage Coeff.	(min) =	1.3	5 (11) 0	6.11 (11)	
Unit Hyd. Ipeak Unit Hyd neak	$(m \pm m) = (cmg) =$	s.U ۲	0 3	.15	
onic nya. peak		• 5	~	• ± 5	*TOTALS*
PEAK FLOW	(cms)=	.1	5	.15	.279 (iii)
TIME TO PEAK	(hrs)=	2.0	0	2.08	2.00
RUNOFF VOLUME	(mm) =	79.0	0	42.85	55.50

(K)	Conceptual Stormwater Management Pla Hilan Village Residential Subdivisio 38 Carss Street, Almonte, Ontar			
Project # 210864	44 of 50	April 11, 2022		
TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	80.57 80.57 .98 .53	80.57 .69		
***** WARNING: STORAGE COEFF	. IS SMALLER THAN TIME STE	P!		
<pre>(i) HORTONS EQUATION 3 Fo (mm/hr)= 76 Fc (mm/hr)= 13 (ii) TIME STEP (DT) SHO THAN THE STORAGE 0 (iii) PEAK FLOW DOES NOT</pre>	SELECTED FOR PERVIOUS LOSS .20 K (1/hr)= .20 Cum.Inf. (mm)= OULD BE SMALLER OR EQUAL COEFFICIENT. T INCLUDE BASEFLOW IF ANY.	ES: 4.14 .00		
CALIB STANDHYD (0004) Area ID= 1 DT= 5.0 min Total	(ha)= 1.59 Imp(%)= 60.00 Dir. Con	n.(%)= 34.00		
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	IMPERVIOUS PERVIOUS (.95 .64 1.57 4.67 3.00 2.00 103.00 20.00 .013 .300 156.20 171.22 5.00 10.00 1.56 (ii) 6.20 (i 5.00 10.00 .33 .15	i) i)		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	$\begin{array}{cccc} .23 & .25 \\ 2.00 & 2.08 \\ 79.00 & 45.60 \\ 80.57 & 80.57 \\ .98 & .57 \end{array}$	*TOTALS* .454 (iii) 2.00 56.95 80.57 .71		
<pre>***** WARNING: STORAGE COEFF (i) HORTONS EQUATION 3 Fo (mm/hr)= 76 Fc (mm/hr)= 13 (ii) TIME STEP (DT) SHO THAN THE STORAGE 0 (iii) PEAK FLOW DOES NOT</pre>	. IS SMALLER THAN TIME STE SELECTED FOR PERVIOUS LOSS .20 K (1/hr)= .20 Cum.Inf. (mm)= OULD BE SMALLER OR EQUAL COEFFICIENT. I INCLUDE BASEFLOW IF ANY.	P! ES: 4.14 .00		
CALIB NASHYD (0005) Area ID= 1 DT= 5.0 min Ia U.H. 9 Unit Hyd Qpeak (cms)=	(ha)= .63 Curve Nu (mm)= 8.90 # of Lin Tp(hrs)= .17 .142	mber (CN)= 81.0 ear Res.(N)= 3.00		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	.092 (i) 2.083 38.993 80.567 .484			

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

_____ _____ RESERVOIR (0011) IN= 2---> OUT= 1 | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .0000
 .0000
 .2700
 .1260

 .0500
 .0080
 .3010
 .1650

 .1030
 .0210
 .3260
 .2100

 .1520
 .0390
 .3470
 .2600

 .1960
 .0630
 .3640
 .3160

 .2350
 .0920
 .3760
 .3770
 -----TPEAK QPEAK AREA R.V. (ha) (cms) 4.990 .482 4.990 .213 (hrs) (mm) INFLOW : ID= 2 (0001) 2.17 2.67 39.13 OUTFLOW: ID= 1 (0011) 39.12 PEAK FLOW REDUCTION [Qout/Qin](%)= 44.06 TIME SHIFT OF PEAK FLOW (min)= 30.00 MAXIMUM STORAGE USED (ha.m.)= .0755 _____ ADD HYD (0007)

 1 + 2 = 3
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1=
 1
 (0011):
 4.99
 .213
 2.67
 39.12

 + ID2=
 2
 (0006):
 .72
 .119
 2.08
 45.64

 1 + 2 = 3 ------ID = 3 (0007): 5.71 .264 2.08 39.94 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0009) 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) _____ (hrs) (mm) ID1= 1 (0004): 1.59 .454 2.00 56.95+ ID2= 2 (0005): .63 .092 2.08 38.99ID = 3 (0009): 2.22 .544 2.00 51.86 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0008)

 2 = 3
 AREA
 QPEAK
 TPEAK
 R.V.

 ------ (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0002):
 .74
 .230
 2.00
 57.51

 + ID2= 2
 (0007):
 5.71
 .264
 2.08
 39.94

 1 + 2 = 3 | د - ت ، ـ _____
(K)		Conceptual Stormwater Management Pla Hilan Village Residential Subdivisio 38 Carss Street, Almonte, Ontar						
Project # 210864			46 of 50			Apr	il 11, 2022	
ID = 3 (00	08): 6.4	45.	468	2.00	41.96			
NOTE: PEAK FLO	WS DO NOT IN	NCLUDE	BASEFLO	NS IF AN	Ү.			
ADD HYD (0010) 1 + 2 = 3	ARI	EA Q	PEAK	TPEAK	R.V.			
ID1= 1 (00 + ID2= 2 (00	103): .9 109): 2.2	97 . 22 .	279 544	2.00	55.50 51.86			
========= ID = 3 (00	10): 3.2	====== 19 .	======= 822	2.00	====== 52.96			
NOTE: PEAK FLC	WS DO NOT IN	NCLUDE	BASEFLO	NS IF AN	Ү.			
**************************************	********* Filename	e: G:\P	rojects	\2021\				
 Ptotal= 83.99 mm	Comments	2108 \Sto s: Otta	64 - Wes rm and S wa July	stview P Sewer De 1 1979	rojects I sign\Desi	nc 38 gn Storm	Carss St Text Fil	
TIM TIM 1 1 2 3 4 4 5 5 6 7	E RAIN 18 2.30 17 2.30 18 2.30 17 2.30 18 2.30 19 8.89 13 8.89 14 8.89 15 38.10 16 38.10 17 38.10 15 38.10	TIME hrs .83 .92 1.00 1.08 1.17 1.25 1.33 1.42 1.50	RAIN mm/hr 38.10 38.10 38.10 50.80 50.80 76.20 106.70	TIME hrs 1.58 1.67 1.75 1.83 1.92 2.00 2.17 2.25	RAIN mm/hr 71.10 71.10 30.50 30.50 30.50 30.50 3.80 3.80 3.80	TIME hrs 2.33 2.42 2.50 2.58 2.67 2.75 2.83 2.92 3.00	RAIN mm/hr 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80	
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area Total Imp	(ha)= p(%)=	.74 58.00	Dir. Co	nn.(%)=	45.00		
Surface Area Dep. Storage Average Slope Length Mannings n	IM (ha) = (mm) = (%) = (m) = =	MPERVIO .43 1.57 3.00 70.20 .013	US PI	ERVIOUS .31 4.67 2.00 20.00 .300	(i)			
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	<pre>mm/hr) = (min) (min) = (min) = (cms) =</pre>	106.70 5.00 1.45 5.00 .33	(ii)	L25.38 10.00 6.37 (10.00 .15	ii)			

(K)		Conceptual Stormwater Management Pl Hilan Village Residential Subdivisi							
Project # 210864		47 0	of 50	iss Sueet, Al	April 11, 202				
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	.10 1.50 82.42 83.99 .98	.09 1.58 49.33 83.99 .59	*TOTALS* .189 1.50 64.22 83.99 .76	(iii)				
***** WARNING: STORA	GE COEFF.	IS SMALLER 1	THAN TIME STEP	!					
(i) HORTONS E Fo (mm Fc (mm (ii) TIME STEP THAN THE (iii) PEAK FLOW	QUATION S /hr)= 76. /hr)= 13. (DT) SHC STORAGE C DOES NOT	ELECTED FOR 1 20 20 Cum.In ULD BE SMALL OEFFICIENT. 'INCLUDE BAS	PERVIOUS LOSSES K (1/hr)= 4 nf. (mm)= ER OR EQUAL EFLOW IF ANY.	5: .14 .00					
CALIB NASHYD (0001) ID= 1 DT= 5.0 min	Area Ia U.H. I	(ha)= 4.9 (mm)= 8.9 Pp(hrs)= .5	99 Curve Numb 90 # of Linea 37	oer (CN)= ar Res.(N)=	81.0 3.00				
Unit Hyd Qpeak	(cms)=	.515							
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	.539 (i) 1.833 41.860 83.988 .498							
(i) PEAK FLOW D	OES NOT I	NCLUDE BASEF	LOW IF ANY.						
CALIB NASHYD (0006) ID= 1 DT= 5.0 min	Area Ia U.H. 1	(ha)= . (mm)= 6. p(hrs)= .	72 Curve Numb 90 # of Linea 17	oer (CN)= ar Res.(N)=	85.0 3.00				
Unit Hyd Qpeak	(cms)=	.162							
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	.123 (i) 1.667 48.571 83.988 .578							
(i) PEAK FLOW D	OES NOT I	NCLUDE BASEF	LOW IF ANY.						
CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area Total	(ha)= . Imp(%)= 56.0	97 D0 Dir.Conn	.(%)= 35.00)				
Surface Area	(ha)=	IMPERVIOUS	PERVIOUS (i))					
Dep. Storage Average Slope	(mm) = (%) =	1.57	4.67						

1	-	_	
1			1
1			
	-	-	•

Project # 210864		48 of	50	April 11, 2022
Length Mannings n	(m) = =	80.40 .013	20.00	
Max.Eff.Inten.(mm over († Storage Coeff. († Unit Hyd. Tpeak († Unit Hyd. peak (†	/hr)= min) min)= min)= cms)=	106.70 5.00 1.57 (ii) 5.00 .33	143.36 10.00 6.07 (ii) 10.00 .15	* 7077715*
PEAK FLOW (TIME TO PEAK () RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	cms)= hrs)= (mm)= (mm)= I =	.10 1.50 82.42 83.99 .98	.14 1.58 52.68 83.99 .63	.244 (iii) 1.50 63.09 83.99 .75
***** WARNING: STORAGE (i) HORTONS EQU Fo (mm/h Fc (mm/h (ii) TIME STEP (THAN THE ST (iii) PEAK FLOW D	COEFF. I ATION SEL r)= 76.20 r)= 13.20 DT) SHOUL DRAGE COE DES NOT I	S SMALLER TH ECTED FOR PEI K Cum.Inf D BE SMALLER FFICIENT. NCLUDE BASEF	AN TIME STEP! RVIOUS LOSSES: (1/hr)= 4.14 . (mm)= .00 OR EQUAL LOW IF ANY.	L)
CALIB STANDHYD (0004) ID= 1 DT= 5.0 min	Area Total Im	(ha)= 1.59 p(%)= 60.00	Dir. Conn.(१	;)= 34.00
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm	I (ha) = (mm) = (%) = (m) = = /hr) =	MPERVIOUS .95 1.57 3.00 103.00 .013 106.70	PERVIOUS (i) .64 4.67 2.00 20.00 .300 161.83	
over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (min) min)= min)= cms)=	5.00 1.82 (ii) 5.00 .32	10.00 6.11 (ii) 10.00 .15	
PEAK FLOW (TIME TO PEAK (RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	cms)= hrs)= (mm)= (mm)= T =	.16 1.50 82.42 83.99 .98	.24 1.58 55.48 83.99 .66	.402 (iii) 1.50 64.64 83.99 .77
***** WARNING: STORAGE	COEFF. I	S SMALLER TH	AN TIME STEP!	
(i) HORTONS EQU Fo (mm/h Fc (mm/h (ii) TIME STEP (THAN THE ST (iii) PEAK FLOW D	ATION SEL r)= 76.20 r)= 13.20 DT) SHOUL DRAGE COE DES NOT I	ECTED FOR PEI K Cum.Inf D BE SMALLER FFICIENT. NCLUDE BASEFI	RVIOUS LOSSES: (1/hr)= 4.14 . (mm)= .00 OR EQUAL LOW IF ANY.	L)

K			Co	nceptual Hilan V 38	Stormwa /illage Re Carss Str	ater Mar esidenti	agement Plar al Subdivisior
oject # 210864			49 of 50)			April 11, 2022
CALIB NASHYD (0005) D= 1 DT= 5.0 min	 Area Ia U.H. I	(ha)= (mm)= p(hrs)=	.63 8.90 .17	Curve M # of Li	Jumber .near Res	(CN)= 8 5.(N)= 3	31.0 3.00
Unit Hyd Qpeal	(cms)=	.142					
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALI RUNOFF COEFFIC	(cms)= (hrs)= (mm)= (mm)= CIENT =	.095 (1.667 41.718 83.988 .497	i)				
(i) PEAK FLOW	DOES NOT I	NCLUDE E	BASEFLOW	IF ANY.			
RESERVOIR (0011) IN= 2> OUT= 1 DT= 5.0 min		'LOW S	STORAGE ha.m.)	 OUTE (cn	rLOW S	STORAGE	
	.0 .0 .1 .1 .1 .2	500 030 520 960 350	.0000 .0080 .0210 .0390 .0630 .0920	.2 .3 .3 .3	2700 3010 3260 3470 3640 3760	.1260 .1650 .2100 .2600 .3160 .3770))))
INFLOW : ID= 2 OUTFLOW: ID= 2	2 (0001) L (0011)	AREA (ha) 4.990 4.990	A QP (c	EAK ms) 539 242	TPEAK (hrs) 1.83 2.50	H	R.V. (mm) 41.86 41.85
	PEAK FLC TIME SHIFT MAXIMUM S	W REDU OF PEAK TORAGE	JCTION [Q FLOW USED	out/Qin] (n (ha.	(%)= 44. min)= 40. m.)=	.98 .00 .0994	
ADD HYD (0007) 1 + 2 = 3 ID1= 1 ((0011):	AREA (ha) 4.99	QPEAK (cms) .242	TPEAK (hrs) 2.50	R.V. (mm) 41.85		
+ ID2= 2 ((========)006): =======	.72 ======	.123	1.67 ======	48.57		
ID = 3 (0 NOTE: PEAK FI	DOO7): Lows do noi	5.71 ' INCLUDE	.274 E BASEFLC	2.00 WS IF AN	42.70 TY.		
ADD HYD (0009) 1 + 2 = 3 ID1= 1 (0	 0004):	AREA (ha) 1.59	QPEAK (cms) .402	TPEAK (hrs) 1.50	R.V. (mm) 64.64		
+ ID2= 2 (0)005): =========	.63 ======	.095	1.67 ======	41.72		
ID = 3 (0	0009):	2.22	.482	1.50	58.14		

Project # 210864

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

_____ _____ ADD HYD (0008) | 1 + 2 = 3 | _____ ------ID = 3 (0008): 6.45 .401 1.67 45.17 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ADD HYD (0010) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1 + 2 = 3

 ID1= 1 (0003):
 .97
 .244
 1.50
 63.09

 + ID2= 2 (0009):
 2.22
 .482
 1.50
 58.14

 _____ ID = 3 (0010): 3.19 .726 1.50 59.64 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ FINISH

Appendix B - Preliminary Storm Sewer Design Sheet

STORMWATER MANAGEMENT MODEL Preliminary Storm Sewer Design Sheet Client: Westview Projects Inc. Job No.: 210864 Location: Hilan Village, 38 Carss Street Date: April 11, 2022

10-yr storm

1.00				PROPOSED SEWER						
LOC	ATION		PEAK	TYPE	PIPE	PIPE		FULL FLOW	EXCESS	
FROM	то	Total Area	FLOW*	OF	SIZE	SLOPE	CAPACITY	VELOCITY	CAPACITY	Q/Qfull
		(ha)	Q (I/s)	PIPE	(mm)	(%)	(l/s)	(m/s)	(I/s)	
CA-1a	CA-1b	4.990	136	PVC						
CA-1b	CA-2	5.710	149	CON	525.00	0.35	255	1.18	106	0.59
CA-2	Outlet	0.740	117	CON	450.00	0.60	221	1.39	104	0.53
Outlet	Watercourse	6.450	241	CON	525.00	0.60	333	1.54	92	0.72
Watercourse	River	6.450	241	Open Channe	el	Trapazoidal - 0.5 m flat bottom 3H:1V side slopes			side slopes	
CA5	Watercourse	0.630	47	PVC	450.00	0.35	169	1.06	122	0.28
CA4	Watercourse	1.590	392	CON	600.00	1.20	673	2.38	281	0.58
CA3	Watercourse	0.970	228	CON	600.00	0.25	307	1.09	79	0.74
Watercourse	River	3.190	656	Open Channe	əl	Trapazoidal - 0.5 m flat bottom 3H:1V side slopes				

* Peak flow was obtained from the OTTHYMO stormwater model for a 10 year design storm

100-yr storm

1.00				PROPOSED SEWER						
100	ATION		PEAK	TYPE	PIPE	PIPE		FULL FLOW	EXCESS	
FROM	то	Total Area	FLOW**	OF	SIZE	SLOPE	CAPACITY	VELOCITY	CAPACITY	Q/Qfull
		(ha)	Q (I/s)	PIPE	(mm)	(%)	(I/s)	(m/s)	(I/s)	
CA-1a	CA-1b	4.990	227	PVC						
CA-1b	CA-2	5.710	247	CON	525.00	0.35	255	1.18	8	0.97
CA-2	Outlet	0.740	202	CON	450.00	0.60	221	1.39	19	0.91
Outlet	Watercourse	6.450	464	CON	525.00	0.60	333	1.54	-131	1.39
Watercourse	River	6.450	464	Open Channe	əl	Trapazoidal - 0.5 m flat bottom 3H:1V side slopes			side slopes	
CA5	Watercourse	0.630	105	PVC	450.00	0.35	169	1.06	64	0.62
CA4	Watercourse	1.590	621	CON	600.00	1.20	673	2.38	52	0.92
CA3	Watercourse	0.970	378	CON	600.00	0.25	307	1.09	-71	1.23
Watercourse	River	3.190	1085	Open Channe	əl	Trapazoidal - 0.5 m flat bottom 3H:1V side slopes				

** Peak flow was obtained from the OTTHYMO stormwater model for a 100 year design storm

Source Service S

SANITARY PIPE END OF LINE STORM PIPE END OF LINE SANITARY PIPE FLOW DIRECTION STORM PIPE FLOW DIRECTION STRUCTURE SANITARY/STORM SANITARY PIPE STORM PIPE PROPOSED FIRE HYDRANT TOP OF SLOPE WATERMAIN SANITARY FORCEMAIN

	CLIENT NAME		PROJECT No.
12		WESTVIEW PROJECTS INC.	210864
	PROJECT NAME	PROPOSED RESIDENTIAL SUBDIVISION	DATE 11. APRIL. 2022
2	PROJECT LOCATION	8 CARSS STREET, ALMONTE, ONTARIO	scale 1:500
TAR!	DRAWING	SITE SERVICING PLAN	DRAWING No. 210864—SER—1

