

Environmental Noise Control Study Proposed Residential Development

Mill Valley Estates Almonte, Ontario

Prepared for Houchaimi Holdings Inc.

Report PG6496-1 Revision 1 dated December 7, 2022

Table of Contents

		PAGE
1.0	Introduction	1
2.0	Proposed Development	1
3.0	Methodology and Noise Assessment Criteria	2
4.0	Analysis	6
5.0	Results	9
6.0	Discussion and Recommendations	11
6.1	Outdoor Living Areas	11
6.2	2 Indoor Living Areas and Ventilation	12
7.0	Summary of Findings	13
8.0	Statement of Limitations	15

Appendices

Appendix 1 Table 9 - Summary of Reception Points and Geometry (East)

Table 10 - Summary of Reception Points and Geometry (West)

Drawing PG6496-1 - Site Plan

Drawing PG6496-2 - Receptor Location Plan

Drawing PG6496-3 - Site Geometry

Drawing PG6496-3A - Site Geometry - REC 1-1 and REC 1-3

Drawing PG6496-3B - Site Geometry - REC 2-1 and REC 2-3

Drawing PG6496-3C - Site Geometry - REC 3-1 and REC 3-3

Drawing PG6496-3D - Site Geometry - REC 4-1 and REC 4-2

Drawing PG6496-3E - Site Geometry - REC 5-1 and REC 5-2

Drawing PG6496-3F - Site Geometry - REC 6-1 and REC 6-2

Drawing PG6496-3G - Site Geometry - REC 7-1 and REC 7-2

Drawing PG6496-3H - Site Geometry - REC 8-1 and REC 8-2

Drawing PG6496-3I - Site Geometry - REC 9-1 and REC 9-2

Drawing PG6496-3J - Site Geometry - REC 10-1 and REC 10-2

Drawing PG6496-3K - Site Geometry - REC 11-1 and REC 11-2

Drawing PG6496-3L - Site Geometry - REC 12-1 and REC 12-2

Drawing PG6496-3M - Site Geometry - REC 13-1 and REC 13-2

Drawing PG6496-3N - Site Geometry - REC 14-1 and REC 14-2

Drawing PG6496-3O - Site Geometry - REC 15-1 and REC 15-2

Drawing PG6496-3P - Site Geometry - REC 16-1 and REC 16-2

Drawing PG6496-3Q - Site Geometry - REC 17-1 and REC 17-2

Drawing PG6496-3R - Site Geometry - REC 18-1 and REC 18-2

Drawing PG6496-3S - Site Geometry - REC 19

Drawing PG6496-3T - Site Geometry - REC 20

Drawing PG6496-3U - Site Geometry - REC 21

Drawing PG6496-4 – Noise Attenuation Features

Appendix 2 STAMSON Results

Appendix 3 Reports by Others

1.0 Introduction

Paterson Group (Paterson) was commissioned by Houchaimi Holdings Inc. to conduct an environmental noise control study for the proposed residential development "Mill Valley Estates", in the Township of Almonte, Ontario.

The objective of the current study is to:

- ➤ Determine the primary noise sources impacting the site and compare the projected sound levels to guidelines set out by the Ministry of Environment and Climate Change (MOECC).
- Review the projected noise levels and offer recommendations regarding warning classes, construction materials or alternative sound barriers.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes acoustical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

This study has been conducted according to the Ontario Ministry of the Environment Guideline NPC-300.

2.0 Proposed Development

It is understood that the proposed development will consist of four (4) three-storey apartment buildings and four hundred twenty-eight (428) house units. The apartment buildings will consist of 48 units and rise 10 metres above grade. The house units will consist of 34 units of single detached dwellings (35 ft), 73 units of single detached dwellings (42 ft), 72 units of single detached dwellings (45 ft), 88 units of semi-detached dwellings, and 161 units of townhouses. The house units will have two-stories and rise 7 metres above grade. Associated walkways, driveways, landscaped areas, parking areas, and storm water management facilities are further anticipated. Outdoor living areas, including rear yards of the housing units, are identified on the proposed site plan.

3.0 Methodology and Noise Assessment Criteria

The MOECC outlines three (3) sources of environmental noise that must be analyzed separately:

- Surface Transportation Noise
- Stationary Noise
 - new noise-sensitive development applications (noise receptors) in proximity to existing or approved stationary sources of noise, and
 - new stationary sources of noise (noise generating) in proximity to existing or approved noise-sensitive developments
- Aircraft Noise

Surface Transportation Noise

Surface roadway traffic noise, equivalent to sound level energy L_{eq} , provides a measure of the time varying noise level over a period of time. For roadways, the L_{eq} is commonly calculated on the basis of 16-hour (L_{eq16}) daytime (07:00-23:00) and 8-hour (L_{eq8}) nighttime (23:00-7:00) split to assess its impact on residential, commercial and institutional buildings.

The NPC-300 dictates that the influence area must contain any of following conditions to classify as a surface transportation noise source for a subject site:

- Within 100 m of the right-of-way of an existing or proposed arterial, collector or major collector road; a light rail transit corridor; bus rapid transit, or transit priority corridor
- ➤ Within 250 m of the right-of-way for an existing or proposed highway or secondary rail line
- Within 300 m from the right of way of a proposed or existing rail corridor or a secondary main railway line
- Within 500 m of an existing 400 series provincial highway, freeway or principle main railway line.

The Environmental Noise Guidelines for Stationary and Transportation Sources – NPC-300 outlines the limitations of noise levels in relation to the location of the receptors. These can be found in the following tables:

Table 1 – Noise Level Limit for Outdoor Living Areas									
Time Period	L _{eq} Level (dBA)								
Daytime, 7:00-23:00	55								
 Standard taken from Table 2.2a; Sound and Rail 	d Level Limit for Outdoor Living Areas – Road								

Table 2 - Noise Level Limits for Indoor Living Ar	reas				
Type of Space	Time Period	L _{eq} Level (dBA)			
туре от орисе	Time Teriou	Road	Rail		
General offices, reception areas, retail stores, etc.	Daytime 7:00-23:00	50	45		
Theatres, places of worship, libraries, individual or semi-private offices, conference rooms, reading rooms, etc.	Daytime 7:00-23:00	45	40		
Living/dining/den areas of residences , hospitals, nursing/retirement homes, schools, day-care centres	Daytime 7:00-23:00	45	40		
Living/dining/den areas of residences , hospitals, nursing/retirement homes etc. (except schools or day-care centres)	Nighttime 23:00-7:00	45	40		
Sleeping quarters of hotels/motels	Nighttime 23:00-7:00	45	40		
Sleeping quarters of residences , hospitals, nursing/retirement homes, etc.	Nighttime 23:00-7:00	40	35		

Standards taken from Table 2.2b, Sound Level Limit for Indoor Living Areas – Road and Rail and Table 2.2c, Supplementary Sound Level Limits for Indoor Spaces – Road and Rail

Predicted noise levels at the pane of window dictate the action required to achieve recommended noise levels. It is noted in NPC-300 that the limits outlined in Table 2 are for the noise levels on the interior of the window glass pane. An open window is considered to provide a 10 dBA noise reduction, while a standard closed window is capable to provide a minimum 20 dBA noise reduction. The noise level limits of residential building are 45 dBA daytime and 40 dBA nighttime. Therefore, where noise levels exceed 55 dBA daytime and 50 dBA nighttime, the ventilation for the building should consider the provision for central air conditioning. Where noise levels exceed 65 dBA daytime and 60 dBA nighttime, central air conditioning will be required, and the building components will require higher levels of sound attenuation.

When the noise levels are equal to or less than the specified criteria, no noise attenuation (control) measures are required.

When the exceedance of the recommended noise level limits is between 1 dBA and 5 dBA for outdoor living areas (55 dBA < Leq \leq 60 dBA), the proposed development can be completed with no noise control measures incorporated into the site, but the prospective purchasers / tenants should be made aware by suitable Warning Clauses. When the exceedance of recommended noise level limits is more than 5 dBA for outdoor living areas (Leq > 60 dBA), noise control measures are required to reduce Leq to below 60 dBA and as close as 55 dBA as it is technically and economically feasible.

Noise attenuation (control) measures include any or all of the following:

- Noise attenuation barrier
- Provisions for the installation of central air conditioning
- Central air conditioning
- Architectural components designed to provide additional acoustic insulation

In addition to the implementation of noise attenuation features, if required, the following Warning Clauses may be recommended to advise the prospective purchasers / tenants of affected units of potential environmental noise problem:

Table 3 – Warning Clauses for Outdoor Living Areas										
Leq (dBA)	Warning Clause	Description								
55 dBA < L _{eq(16)} ≤ 60 dBA	Warning Clause Type A	"Purchasers/tenants are advised that sound levels due to increasing road traffic (rail traffic) (air traffic) may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment."								
60 dBA < L _{eq(16)}	Warning Clause Type B	"Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing road traffic (rail traffic) (air traffic) may on occasions interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment."								
Clauses taken from Stationary and Tran		Varning Clauses; Environmental Noise Guidelines for urces - NPC-300								

Report: PG6496-1 Revision 1 December 7, 2022

Table 4 – Warning Clause	s for Indoor L	iving Areas
Leq (dBA)	Warning Clause	Description
$55 \text{ dBA} < L_{eq(16)} \le 65 \text{ dBA}$ $50 \text{ dBA} < L_{eq(8)} \le 60 \text{ dBA}$	Warning Clause Type C	"This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment."
$65 \text{ dBA} < L_{eq(16)}$ $60 \text{ dBA} < L_{eq(8)}$	Warning Clause Type D	"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment."
Clauses taken from		Varning Clauses; Environmental Noise Guidelines for

Stationary and Transportation Sources - NPC-300

Stationary Noise

Stationary noise sources include sources or facilities that are fixed or mobile and can cause a combination of sound and vibration levels emitted beyond the property line. These sources may include commercial air conditioner units, generators and fans. Facilities that may contribute to stationary noise may include car washes, snow disposal sites, transit stations and manufacturing facilities.

The subject site is not in proximity to existing or approved stationary sources of noise. Therefore, a stationary noise analysis will not be required.

Aircraft / Airport Noise

The subject site is not located within the Airport Vicinity Development Zone. Therefore this project will not require an aircraft/airport noise analysis. No warning clauses regarding aircraft or airport noise will be required.

4.0 Analysis

Surface Transportation Noise

The subject development is bordered to the north by residential dwellings and undeveloped grassed area, to the east by Appleton Side Road, residential dwelling, and undeveloped grassed area, to the south by undeveloped grassed area, and to the west by Old Almonte Road followed by residential dwellings, Robert Hill Street, Johanna Street, Merrithew Street, Van Dusen Street, Jack Dalgity Street, and Stewart Lee Avenue. Appleton Side Road, Old Almonte Road, Robert Hill Street, Johanna Street, Merrithew Street, Van Dusen Street, Jack Dalgity Street, and Stewart Lee Avenue are identified within the 100 m radius of proposed development.

Based on the Municipality of Mississippi Mill's Official Plan, Appleton Side Road and Old Almonte Road are considered 2-lane urban collector roads (2-UCU). Other roads within the 100 m radius of the proposed development are not classified as either arterial, collector or major collector roads and therefore are not included in this study. The major sources of traffic noise are due to the Appleton Side Road to the east of the proposed development, and Old Almonte Road to the west of the proposed development.

All noise sources are presented in Drawing PG6496-3 - Site Geometry located in Appendix 1.

It is understood that a Traffic Impact Assessment was completed by CGH Transportation and is included in Appendix 3. Results of traffic counts for Old Almonte Road (Paterson Road) was reviewed with respect to standard growth rates and anticipated traffic patterns. It was determined that a 'worse case' scenario for this roadway would result in an AADT of 4001. The remainder of the AADT values were provided by the City of Ottawa, taking into consideration the right-of-way width and the implied roadway classification. It is understood that these values represent the maximum allowable capacity of the proposed roadways. The parameters to be used for sound level predictions can be found below.

Table 5 – Traffic and Road Parameters												
Segment	Roadway Classification	AADT Veh/Day	Speed Limit (km/h)	Day/Night Split %	Medium Truck %	Heavy Truck %						
Appleton Side Road	2-UCU	8000	40	92/8	7	5						
Old Almonte Road	2-UCU	4001	40	92/8	7	5						

Four (4) levels of reception points were selected for this analysis. The following elevations were selected from the heights provided on the survey plan for the subject dwellings.

Table 6 – Elevations of Reception Points											
Floor Number	Elevation at Centre of Window (m)	Floor Use	Daytime / Nighttime Analysis								
First Floor	1.5	Living Area/Bedroom	Daytime / Nighttime								
Second Floor	4.5	Living Area/Bedroom	Daytime / Nighttime								
Third Floor	8.5	Living Area/Bedroom	Daytime / Nighttime								
Rear Yard	1.5		Outdoor Living Area								

For this analysis, a reception point was taken at the centre of each floor, at the first floor and top floor. Outdoor living areas, for this project identified as rear yards, are anticipated at the house units of the proposed development. Three receptors (REC 19 to REC 21) were selected in the centre of rear yards adjacent to the major sources of traffic noise at 1.5 m high. One of these outdoor living area receptors (REC 19) was placed along the eastern boundary of proposed development and two receptors (REC 20 and REC 21) were placed along the western boundary of proposed development. Reception points are detailed on Drawing PG6496-2 - Receptor Locations presented in Appendix 1.

All horizontal distances have been measured from the reception point to the edge of the right-of-way. The roadway was analyzed where it intersected the 100 m buffer zone, which is reflected in the local angles described in Paterson Drawings PG6496-3A to 3U - Site Geometry in Appendix 1.

Tables 9 and 10 - Summary of Reception Points and Geometry, located in Appendix 1, provides a summary of the points of reception and their geometry with respect to the noise sources. The analysis is completed so that no effects of sound reflection off of the building facade are considered, as stipulated by the ENGC.

The subject site is gently levelled and at grade with the neighbouring roads within the 100 m radius.

The analysis was completed using STAMSON version 5.04, a computer program which uses the road and rail traffic noise prediction methods using ORNAMENT (Ontario Road Noise Analysis Method for Environment and Transportation) and STEAM (Sound from Trains Environment Analysis Method), publications from the Ontario Ministry of Environment and Energy.

5.0 Results

Surface Transportation Noise

The primary descriptors are the 16-hour daytime (7:00-23:00) and the 8-hour nighttime (23:00-7:00) equivalent sound levels, $L_{eq(16)}$ and $L_{eq(8)}$ for City roads.

The exterior noise levels due to roadway traffic sources were analyzed with the STAMSON version 5.04 software at all reception points. The input and output data of the STAMSON modeling can be found in Appendix 2, and the summary of the results can be found in Tables 7 and 8.

Table 7: Exte	erior Noise Levels	due to Roadway Traffic Sources (Eastern	Portion of Site	e)
Reception Point	Height Above Grade (m)	Receptor Location	Daytime L _{eq(16)} (dBA)	Nighttime L _{eq(8)} (dBA)
REC 1-1	1.5	3-Storey Building, Eastern Elevation, 1st Floor	59	51
REC 1-3	8.5	3-Storey Building, Eastern Elevation, 3rd Floor	60	52
REC 2-1	1.5	3-Storey Building, Northern Elevation, 1st Floor	53	46
REC 2-3	8.5	3-Storey Building, Northern Elevation, 3rd Floor	54	47
REC 3-1	1.5	3-Storey Building, Southern Elevation, 1st Floor	53	46
REC 3-3	8.5	3-Storey Building, Southern Elevation, 3rd Floor	54	47
REC 4-1	1.5	Single Detached House, Eastern Elevation, 1st Floor	59	51
REC 4-2	4.5	Single Detached House, Eastern Elevation, 2nd Floor	59	52
REC 5-1	1.5	Single Detached House, Northern Elevation, 1st Floor	54	47
REC 5-2	4.5	Single Detached House, Northern Elevation, 2nd Floor	55	47
REC 6-1	1.5	Single Detached House, Southern Elevation, 1st Floor	53	45
REC 6-2	4.5	Single Detached House, Southern Elevation, 2nd Floor	53	45
REC 7-1	1.5	Semi-detached House, Eastern Elevation, 1st Floor	49	41
REC 7-2	4.5	Semi-detached House, Eastern Elevation, 2nd Floor	50	42
REC 19	1.5	Single Detached House, rear yard	62	

Table 8: Exte	erior Noise Levels	due to Roadway Traffic Sources (Western	Portion of Site	e)
Reception Point	Height Above Grade (m)	Receptor Location	Daytime L _{eq(16)} (dBA)	Nighttime L _{eq(8)} (dBA)
REC 8-1	1.5	Semi-detached House (north), Western Elevation, 1st Floor	56	48
REC 8-2	4.5	Semi-detached House (north), Western Elevation, 2nd Floor	56	48
REC 9-1	1.5	Semi-detached House (north), Northern Elevation, 1st Floor	51	44
REC 9-2	4.5	Semi-detached House (north), Northern Elevation, 2nd Floor	52	44
REC 10-1	1.5	Semi-detached House (north), Southern Elevation, 1st Floor	51	44
REC 10-2	4.5	Semi-detached House (north), Southern Elevation, 2nd Floor	52	44
REC 11-1	1.5	Semi-detached House (south), Western Elevation, 1st Floor	56	48
REC 11-2	4.5	Semi-detached House (south), Western Elevation, 2nd Floor	56	49
REC 12-1	1.5	Semi-detached House (south), Southern Elevation, 1st Floor	51	43
REC 12-2	4.5	Semi-detached House (south), Southern Elevation, 2nd Floor	51	44
REC 13-1	1.5	Single Detached House (north), Western Elevation, 1st Floor	52	44
REC 13-2	4.5	Single Detached House (north), Western Elevation, 2nd Floor	52	45
REC 14-1	1.5	Single Detached House (north), Northern Elevation, 1st Floor	48	40
REC 14-2	4.5	Single Detached House (north), Northern Elevation, 2nd Floor	48	41
REC 15-1	1.5	Single Detached House (south), Western Elevation, 1st Floor	52	44
REC 15-2	4.5	Single Detached House (south), Western Elevation, 2nd Floor	52	45
REC 16-1	1.5	Single Detached House (south), Southern Elevation, 1st Floor	48	40
REC 16-2	4.5	Single Detached House (south), Southern Elevation, 2nd Floor	49	41
REC 17-1	1.5	Townhouse, Western Elevation, 1st Floor	48	41
REC 17-2	4.5	Townhouse, Western Elevation, 2nd Floor	49	41
REC 18-1	1.5	Single Detached House, Western Elevation, 1st Floor	48	41
REC 18-2	4.5	Single Detached House, Western Elevation, 2nd Floor	49	41
REC 20	1.5	Semi-detached House (north), rear yard	59	
REC 21	1.5	Semi-detached House (south), rear yard	59	

6.0 Discussion and Recommendations

6.1 Outdoor Living Areas

Rear yards are anticipated at the house units of the proposed development. Three receptors (REC 19 to REC 21) were selected in the centre of rear yards near to the major sources of traffic noise at a height of 1.5 m. Of which, one receptor (REC 19) was placed along the eastern boundary of proposed development and two receptors (REC 20 and REC 21) were placed along the western boundary of proposed development.

It is assumed that the rear yards will only be utilized as outdoor living areas provided that the proposed dwellings are constructed. Utilizing the exteriors of proposed dwellings as noise barriers, the proposed Leq(16) at the rear yards of house units along the western boundary will be 59 dBA, which exceed the 55 dBA threshold value specified by the MOECC, but is below the 60 dBA. Therefore, the exceedance is acceptable with no additional attenuation measures provided that Warning Clause A is included on all deeds of sale on the houses adjacent to Old Almonte Road (Paterson Road).

Utilizing the exteriors of proposed dwellings as noise barriers, the proposed Leq(16) at the rear yards of house units along the eastern boundary will be 62 dBA, which exceed the 55 dBA threshold value specified by the MOECC. Upon review of the aforementioned result for the proposed development, a noise attenuation feature consisting of an acoustic fence along the rear yards of house units at the eastern boundary was considered. The acoustic fence would be considered a noise barrier and is designed to be 2.5 m high. The acoustic fence, in addition to utilizing the exteriors of the dwellings as noise barriers, was completed as REC 19TR which is included in Appendix 2. The result of STAMSON modeling indicates that the combination of the application of exterior claddings and the 2.5 m high noise barrier could reduce the anticipated noise levels at rear yards of house units along the eastern boundary to 54 dBA during the daytime period (7:00-23:00), which are below the 55 dBA threshold value specified by the MOECC. Therefore, further noise attenuation measure is not required.

6.2 Indoor Living Areas and Ventilation

The results of the STAMSON modeling indicate that the noise levels of proposed dwellings at the eastern portion of the proposed development will range between 49 dBA and 60 dBA during the daytime period (07:00-23:00) and between 41 dBA and 52 dBA during the nighttime period (23:00-7:00). The noise levels on the eastern elevation of proposed three-storey apartment buildings and single detached houses along the eastern site boundary will exceed the limit for the exterior of the pane of glass (55 dBA) specified by the MOECC. Therefore, the units on the eastern elevation of proposed apartment buildings and the aforementioned single detached houses should be designed with the provision of central air conditioning units, along with the warning clause Type C, as outlined in Table 3.

The results of the STAMSON modeling indicate that the noise levels of proposed dwellings at the western portion of the proposed development will range between 48 dBA and 56 dBA during the daytime period (07:00-23:00) and between 40 dBA and 49 dBA during the nighttime period (23:00-7:00). The noise levels on the western elevation of proposed semi-detached houses along the western site boundary will exceed the limit for the exterior of the pane of glass (55 dBA) specified by the MOECC. Therefore, the aforementioned semi-detached houses should be designed with the provision of central air conditioning units, along with the warning clause Type C, as outlined in Table 3.

It is also noted that the results of STAMSON modeling indicate that the noise levels of all dwellings at the proposed development will be below 65 dBA, and therefore standard building materials are acceptable to provide adequate soundproofing.

7.0 Summary of Findings

The subject site "Mill Valley Estates" is located at the Township of Almonte, Ontario. It is understood that the proposed development will consist of four (4) three-storey apartment buildings and four hundred twenty-eight (428) house units. The apartment buildings will rise 10 metres above grade and the house units will rise 7 metres above grade. There are two major sources of surface transportation noise to the proposed development: Appleton Side Road and Old Almonte Road.

Rear yards are anticipated as Outdoor Living Areas at the house units. Rear yards along the eastern site boundary and the western site boundary were selected for analysis.

The results of STAMSON modeling indicate that the noise levels at the rear yards of house units along the western site boundary are expected to be 59 dBA during the daytime period, which exceed the 55 dBA threshold value specified by the MOECC. This exceedance is acceptable with no additional noise attenuation features provided that Warning Clause A is included on all deeds of sale.

The noise levels at the rear yards of house units along the eastern site boundary are expected to be 62 dBA, during the daytime period, which exceed the 55 dBA threshold value specified by the MOECC. According to MOECC, noise control measures (i.e. barriers) are required to reduce the Leq to 55 dBA where technically and economically feasible. Based on the results of STAMSON modeling, we recommend the installation of 2.5 metres acoustic fence (solid wood fence with no gaps) along the rear yards of house units at the eastern site boundary of the proposed development. The revised analysis taking into consideration the proposed noise barrier indicates that the anticipated noise levels at the aforementioned rear yards can be reduced to 54 dBA. These noise levels are below the 55 dBA threshold value specified by the MOECC. Therefore, further noise attenuation measure is not required.

Several reception points were selected for the surface transportation noise analysis, consisting of the centre of first level and top level. The results of STAMSON modeling indicate that the noise levels on the eastern elevation of the proposed three-storey apartment buildings and single detached houses along the eastern site boundary are expected to exceed the 55 dBA threshold specified by the ENCG. The noise levels on the western elevation of the proposed semi-detached houses along the western site boundary are also expected to exceed the 55 dBA threshold specified by the ENCG. Therefore, the design with the provision of a central air conditioning unit, along with a warning clause Type C, will be

required for the units on the eastern elevation of proposed apartment buildings, the single detached houses along the eastern site boundary, and the semi-detached houses along the western site boundary. It is also noted that the results of STAMSON modeling indicate that the noise levels of all dwellings at the proposed development will be below 65 dBA, and therefore standard building materials are acceptable to provide adequate soundproofing.

The following warning clause is to be included on all Offers of Purchase and Sale and/or lease agreements on properties identified on Paterson Drawing PG6496-4 in Appendix 1:

Warning Clause C

"This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment."

Warning Clause A

"Purchasers/tenants are advised that sound levels due to increasing road traffic may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment."

8.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. Our recommendations should be reviewed when the project drawings and specifications are complete.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Houchaimi Holdings Inc. or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Yolanda Tang, M.A.Sc.

Golanda Tang

Pecember 7, 2022 S. A. BOISVENUE 100176631

Stephanie A. Boisvenue, P.Eng.

Report Distribution:

- ☐ Houchaimi Holdings Inc. (email copy)
- ☐ Paterson Group (1 copy)

APPENDIX 1

Table 9 - Summary of Reception Points and Geometry (Eastern Portion of the Site)

Table 10 - Summary of Reception Points and Geometry (Western Portion of the Site)

Drawing PG6496-1 - Site Plan

Drawing PG6496-2 - Receptor Location Plan

Drawing PG6496-3 - Site Geometry

Drawing PG6496-3A - Site Geometry - REC 1-1 and REC 1-3

Drawing PG6496-3B - Site Geometry - REC 2-1 and REC 2-3

Drawing PG6496-3C - Site Geometry - REC 3-1 and REC 3-3

Drawing PG6496-3D - Site Geometry - REC 4-1 and REC 4-2

Drawing PG6496-3E - Site Geometry - REC 5-1 and REC 5-2

Drawing PG6496-3F - Site Geometry - REC 6-1 and REC 6-2

Drawing PG6496-3G - Site Geometry - REC 7-1 and REC 7-2

Drawing PG6496-3H - Site Geometry - REC 8-1 and REC 8-2

Drawing PG6496-3I - Site Geometry - REC 9-1 and REC 9-2

Drawing PG6496-3J - Site Geometry - REC 10-1 and REC 10-2

Drawing PG6496-3K - Site Geometry - REC 11-1 and REC 11-2

Drawing PG6496-3L - Site Geometry - REC 12-1 and REC 12-2

Drawing PG6496-3M - Site Geometry - REC 13-1 and REC 13-2

Drawing PG6496-3N - Site Geometry - REC 14-1 and REC 14-2

Drawing PG6496-3O - Site Geometry - REC 15-1 and REC 15-2

Drawing PG6496-3P - Site Geometry - REC 16-1 and REC 16-2

Drawing PG6496-3Q - Site Geometry - REC 17-1 and REC 17-2

Drawing PG6496-3R - Site Geometry - REC 18-1 and REC 18-2

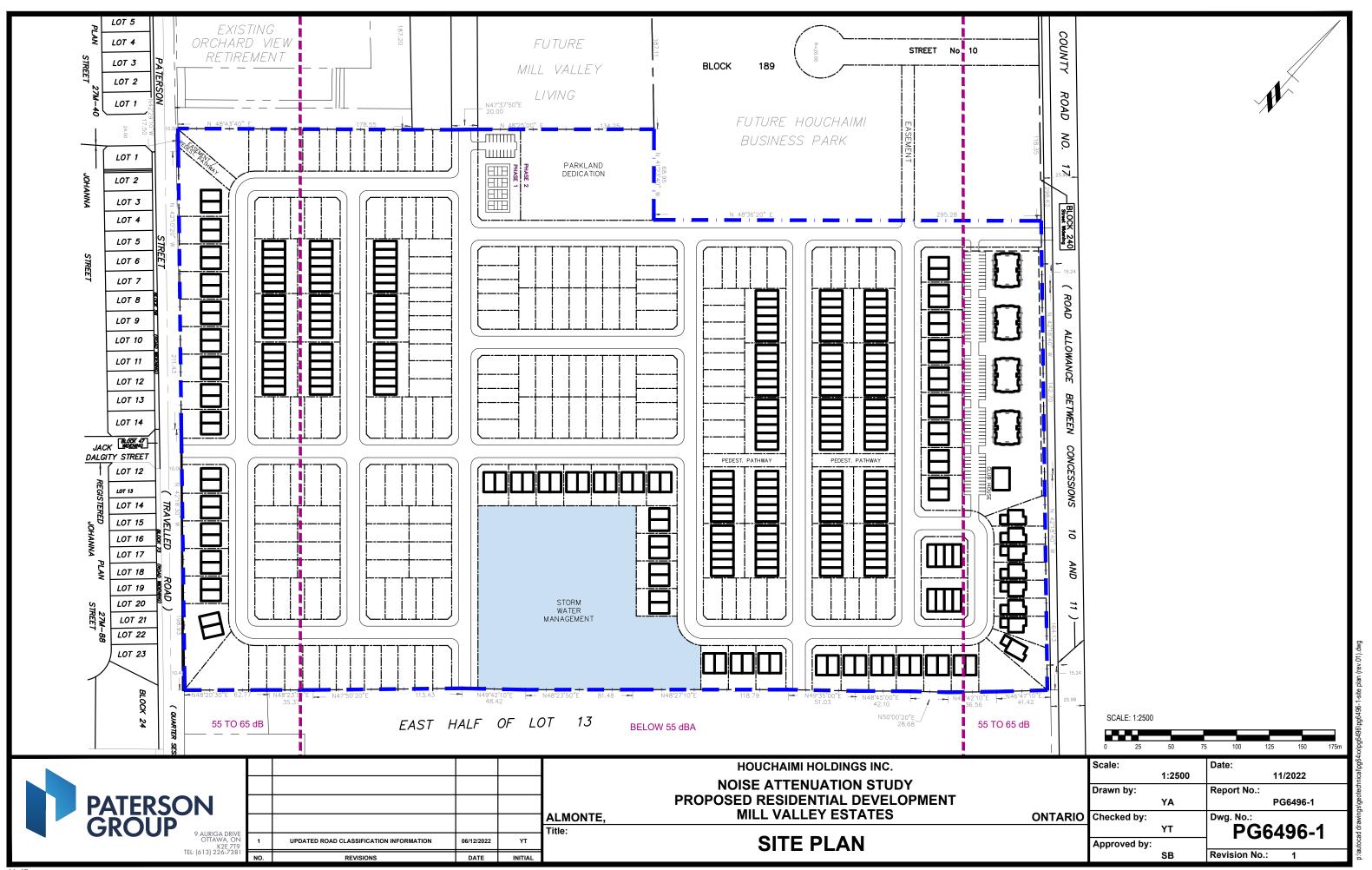
Drawing PG6496-3S - Site Geometry - REC 19

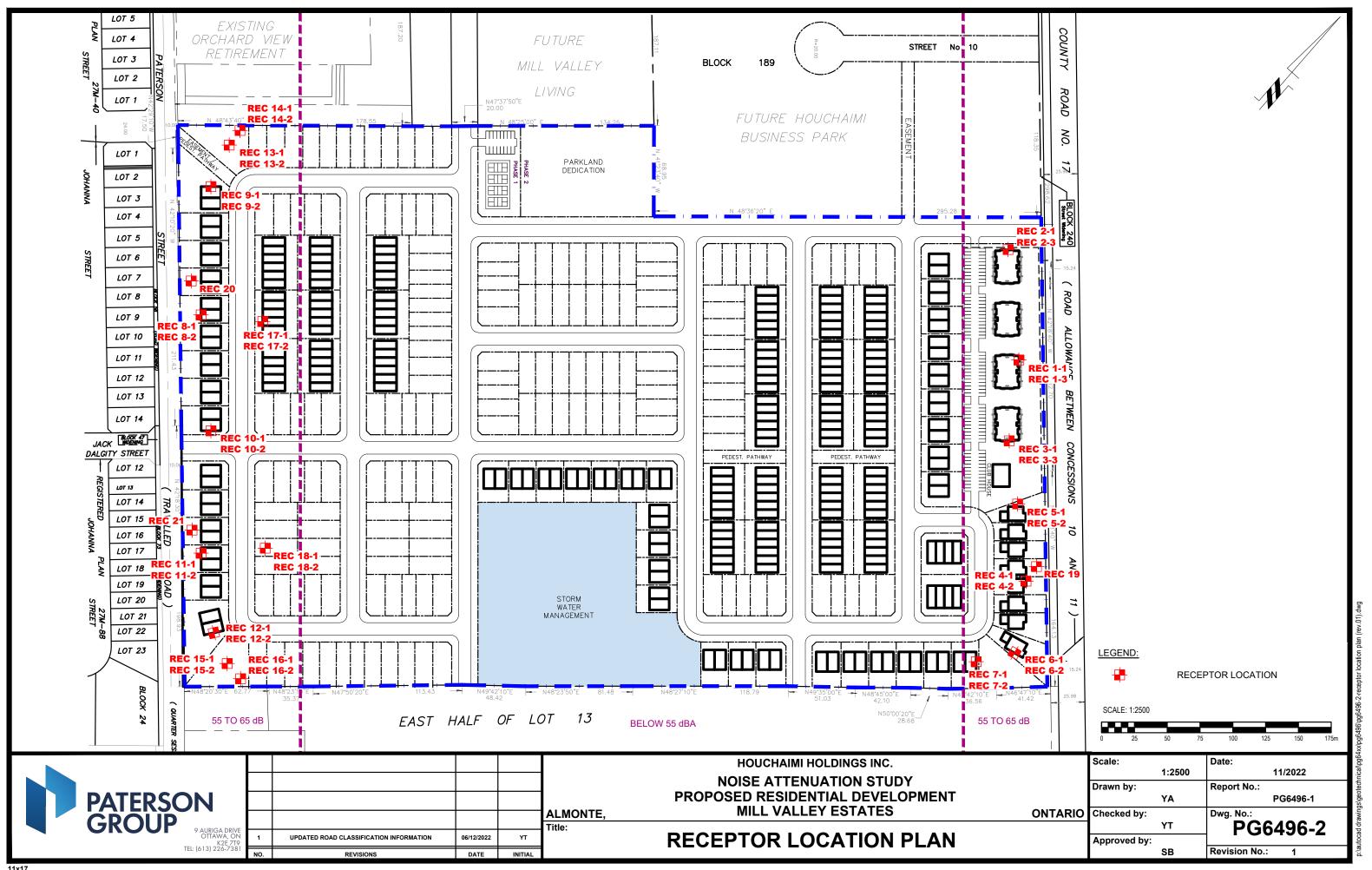
Drawing PG6496-3T - Site Geometry - REC 20

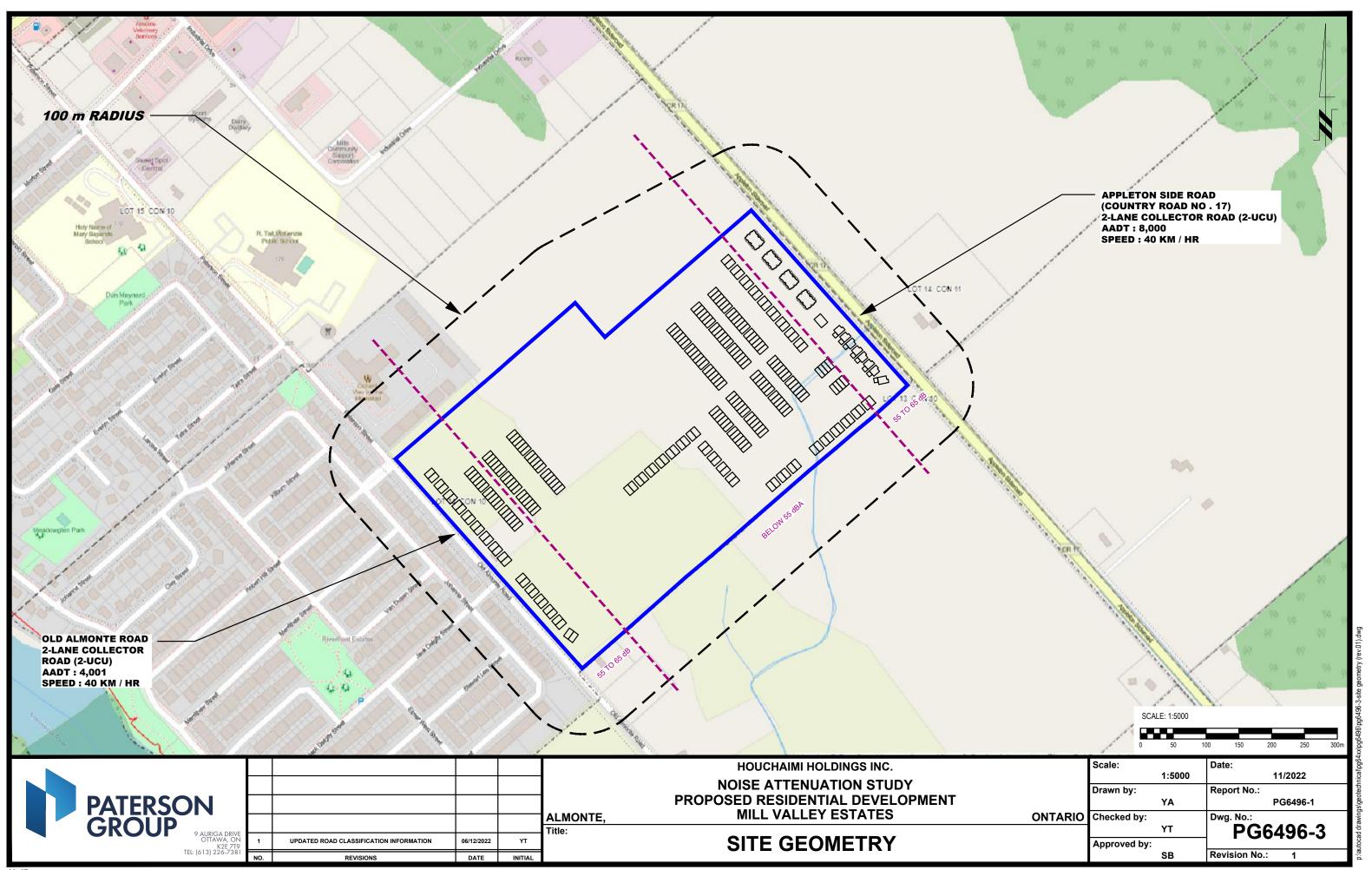
Drawing PG6496-3U - Site Geometry - REC 21

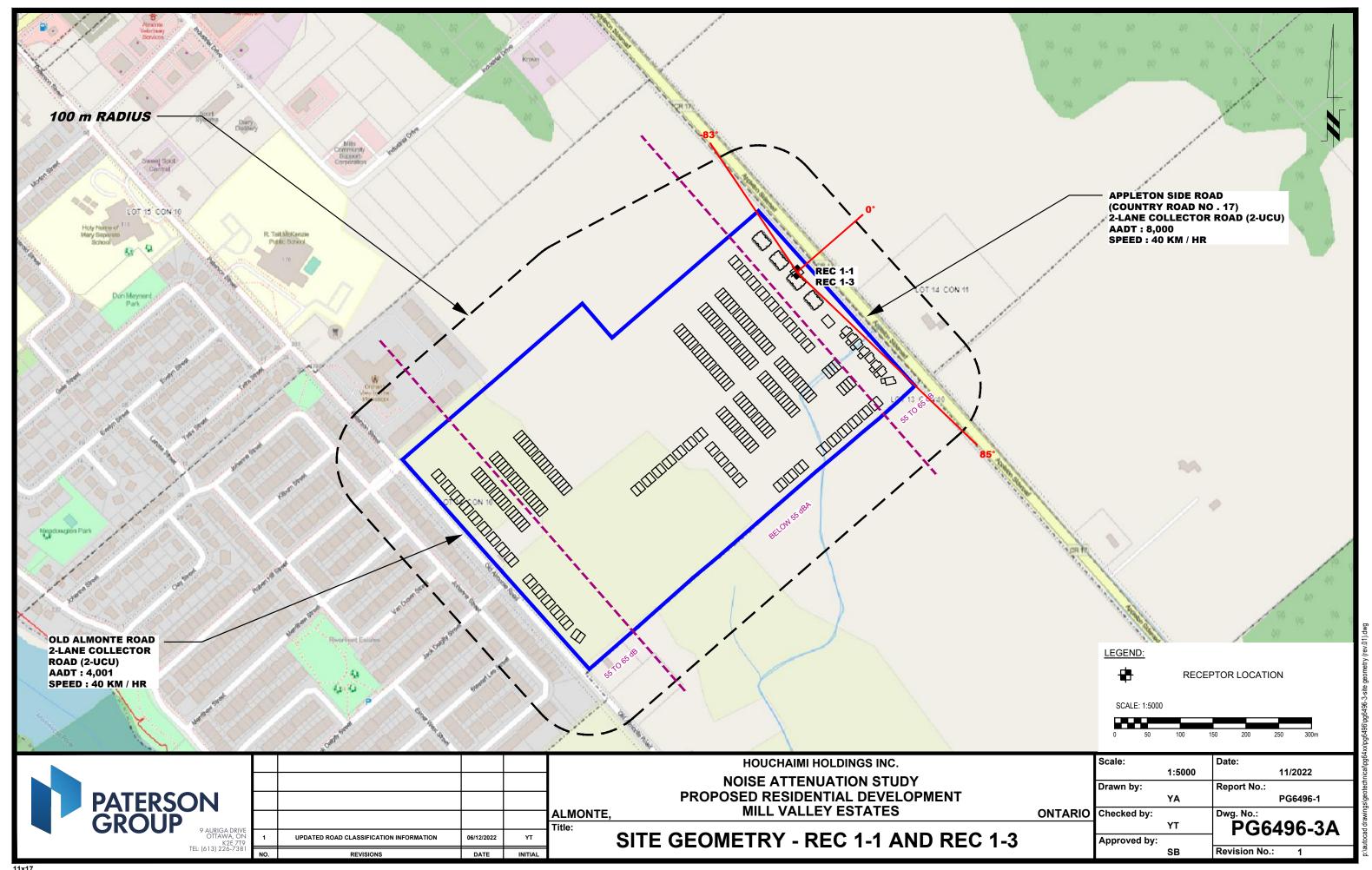
Drawing PG6496-4 – Noise Attenuation Features

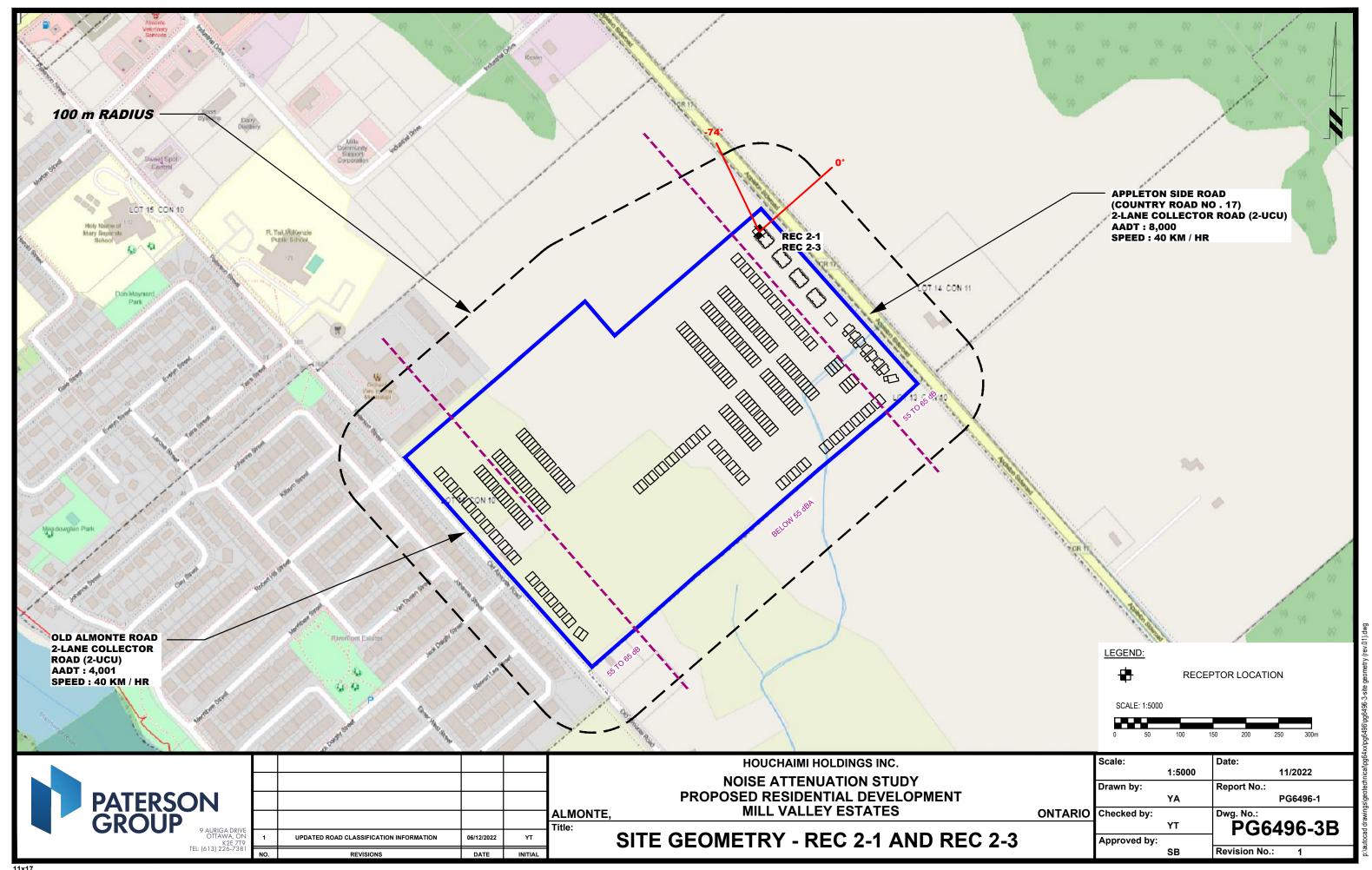
Table 9 - Summary of Reception Points and Geometry Mill Valley Estates (Eastern Portion of the Site)

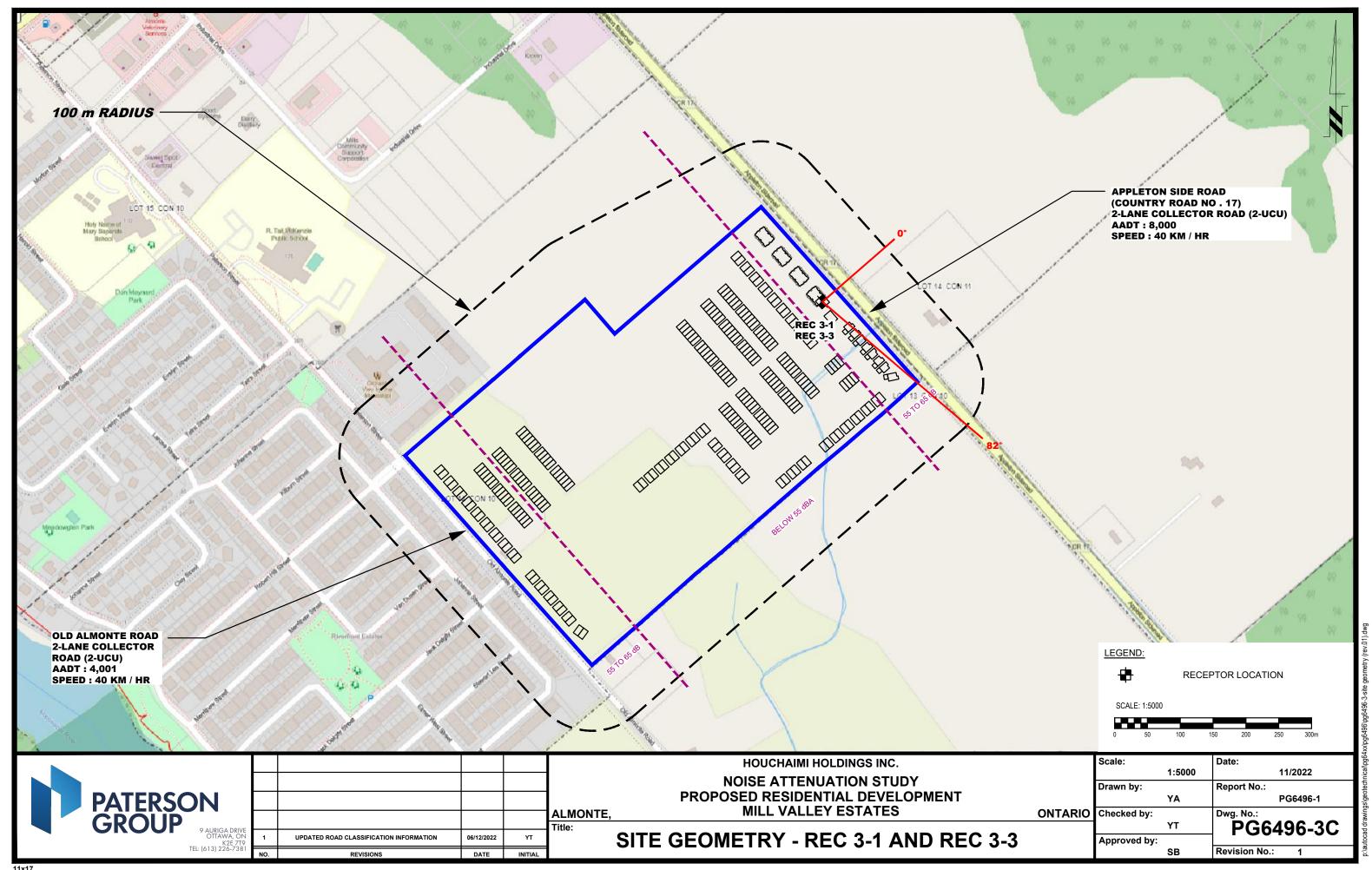

Point of		Leq Day	Appleton Side Road											
Reception	Location	(dBA)	Horizontal (m)	Vertical (m)	Total (m)	Local Angle (degree)	Number of Rows of Houses	Density (%)	\sim	>>	>>	>>		
REC 1-1	3-Storey Building, Eastern Elevation, 1st Floor	59	25	1.5	25.0	-83, 85	n/a	n/a	\times	\times		><		
REC 1-3	3-Storey Building, Eastern Elevation, 3rd Floor	60	25	8.5	26.4	-83, 85	n/a	n/a	\times	\times				
REC 2-1	3-Storey Building, Northern Elevation, 1st Floor	53	35	1.5	35.0	-74, 0	n/a	n/a		\times	\times			
REC 2-3	3-Storey Building, Northern Elevation, 3rd Floor	54	35	8.5	36.0	-74, 0	n/a	n/a						
REC 3-1	3-Storey Building, Southern Elevation, 1st Floor	53	35	1.5	35.0	0, 82	n/a	n/a	\times		\times			
REC 3-3	3-Storey Building, Southern Elevation, 3rd Floor	54	35	8.5	36.0	0, 82	n/a	n/a						
REC 4-1	Single Detached House, Eastern Elevation, 1st Floor	59	25	1.5	25.0	-87, 81	n/a	n/a	\times	\times		\nearrow		
REC 4-2	Single Detached House, Eastern Elevation, 2nd Floor	59	25	4.5	25.4	-87, 81	n/a	n/a	>	\nearrow				
REC 5-1	Single Detached House, Northern Elevation, 1st Floor	54	30	1.5	30.0	-85, 0	n/a	n/a	\nearrow	\nearrow				
REC 5-2	Single Detached House, Northern Elevation, 2nd Floor	55	30	4.5	30.3	-85, 0	n/a	n/a	\geq	\geq	\geq			
REC 6-1	Single Detached House, Southern Elevation, 1st Floor	53	30	1.5	30.0	0, 44	n/a	n/a	>					
REC 6-2	Single Detached House, Southern Elevation, 2nd Floor	53	30	4.5	30.3	0, 44	n/a	n/a						
REC 7-1	Semi-detached House, Eastern Elevation, 1st Floor	49	60	1.5	60.0	-6, 59	n/a	n/a		\nearrow				
REC 7-2	Semi-detached House, Eastern Elevation, 2nd Floor	50	60	4.5	60.2	-6, 59	n/a	n/a		\nearrow		\nearrow		
REC 19	Single Detached House, rear yard	62	15	1.5	15.1	-88, 84	n/a	n/a						

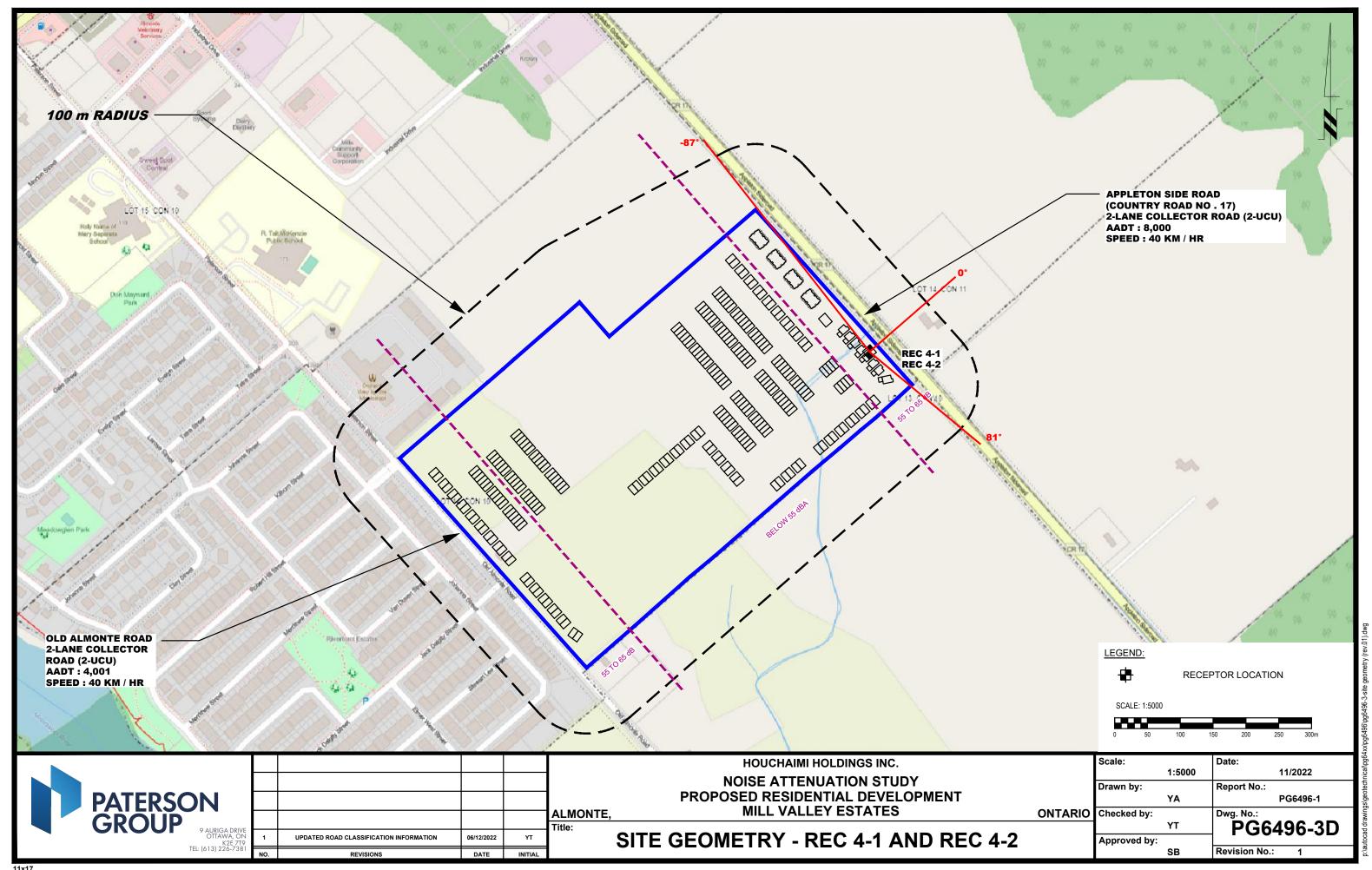

Table 10 - Summary of Reception Points and Geometry Mill Valley Estates (Western Portion of the Site)

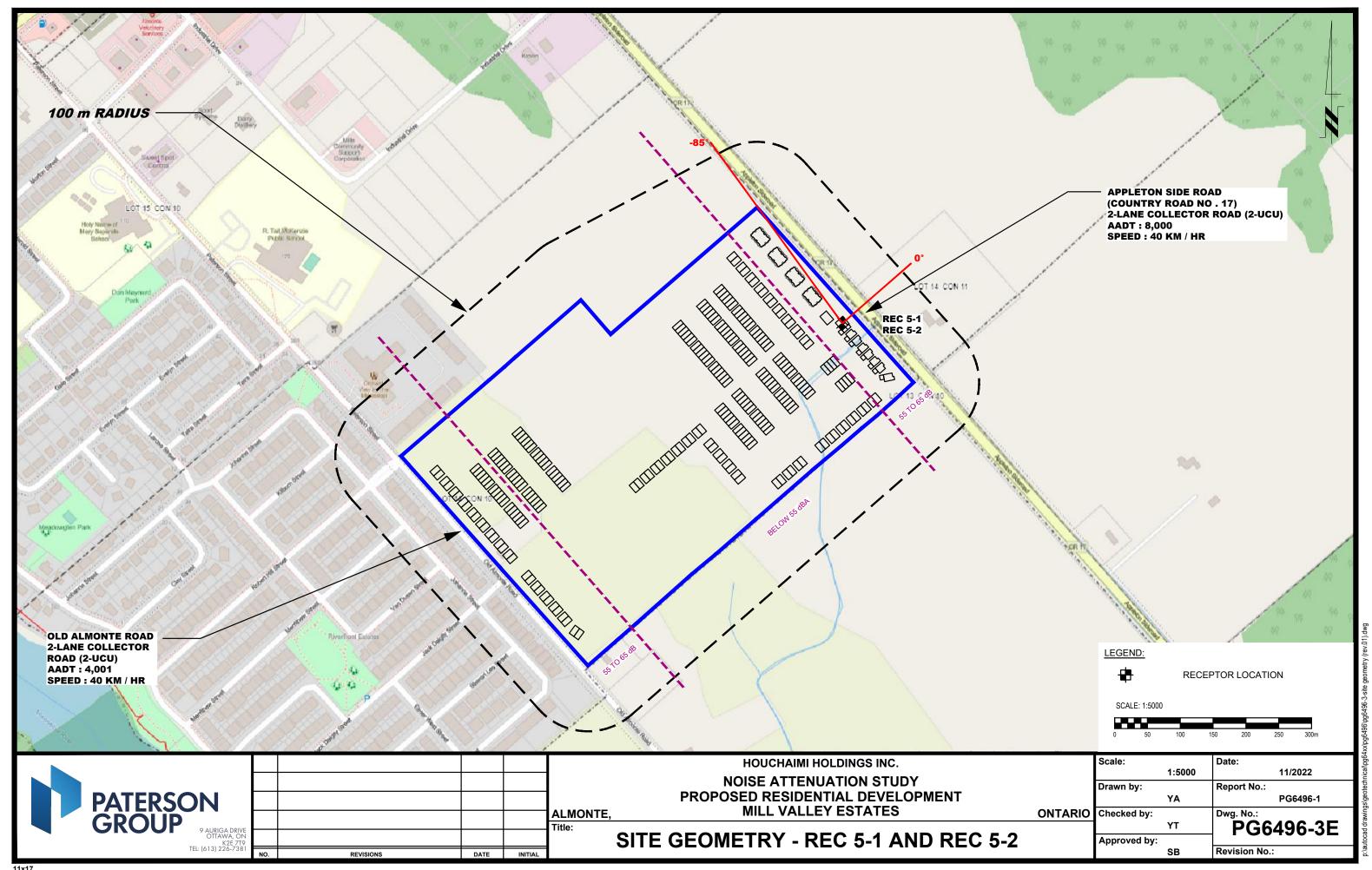

Doint of	Location	Law Davi	Old Almonte Road											
Point of Reception		Location Leq Day (dBA)		Vertical (m)	Total (m)	Local Angle (degree)	Number of Rows of Houses	Density (%)	\sim	\sim				
REC 8-1	Semi-detached House (north), Western Elevation, 1st Floor	56	25	1.5	25.0	-87, 83	n/a	n/a	\times	\times	><			
REC 8-2	Semi-detached House (north), Western Elevation, 2nd Floor	56	25	4.5	25.4	-87, 83	n/a	n/a	\times	\times	\searrow			
REC 9-1	Semi-detached House (north), Northern Elevation, 1st Floor	51	30	1.5	30.0	0, 79	n/a	n/a	\times	\times				
REC 9-2	Semi-detached House (north), Northern Elevation, 2nd Floor	52	30	4.5	30.3	0, 79	n/a	n/a	X	\times				
REC 10-1	Semi-detached House (north), Southern Elevation, 1st Floor	51	30	1.5	30.0	-85, 0	n/a	n/a	\times	\times	\nearrow			
REC 10-2	Semi-detached House (north), Southern Elevation, 2nd Floor	52	30	4.5	30.3	-85, 0	n/a	n/a						
REC 11-1	Semi-detached House (south), Western Elevation, 1st Floor	56	25	1.5	25.0	-86, 87	n/a	n/a	\times	\times	\times			
REC 11-2	Semi-detached House (south), Western Elevation, 2nd Floor	56	25	4.5	25.4	-86, 87	n/a	n/a	\times	\times	\nearrow			
REC 12-1	Semi-detached House (south), Southern Elevation, 1st Floor	51	30	1.5	30.0	-69, 0	n/a	n/a	\times	>	\searrow			
REC 12-2	Semi-detached House (south), Southern Elevation, 2nd Floor	51	30	4.5	30.3	-69, 0	n/a	n/a	\times	\times	\searrow			
REC 13-1	Single Detached House (north), Western Elevation, 1st Floor	52	40	1.5	40.0	-58, 68	n/a	n/a	\times	\times	\searrow			
REC 13-2	Single Detached House (north), Western Elevation, 2nd Floor	52	40	4.5	40.3	-58, 68	n/a	n/a						
REC 14-1	Single Detached House (north), Northern Elevation, 1st Floor	48	45	1.5	45.0	0, 62	n/a	n/a						
REC 14-2	Single Detached House (north), Northern Elevation, 2nd Floor	48	45	4.5	45.2	0, 62	n/a	n/a			\nearrow			

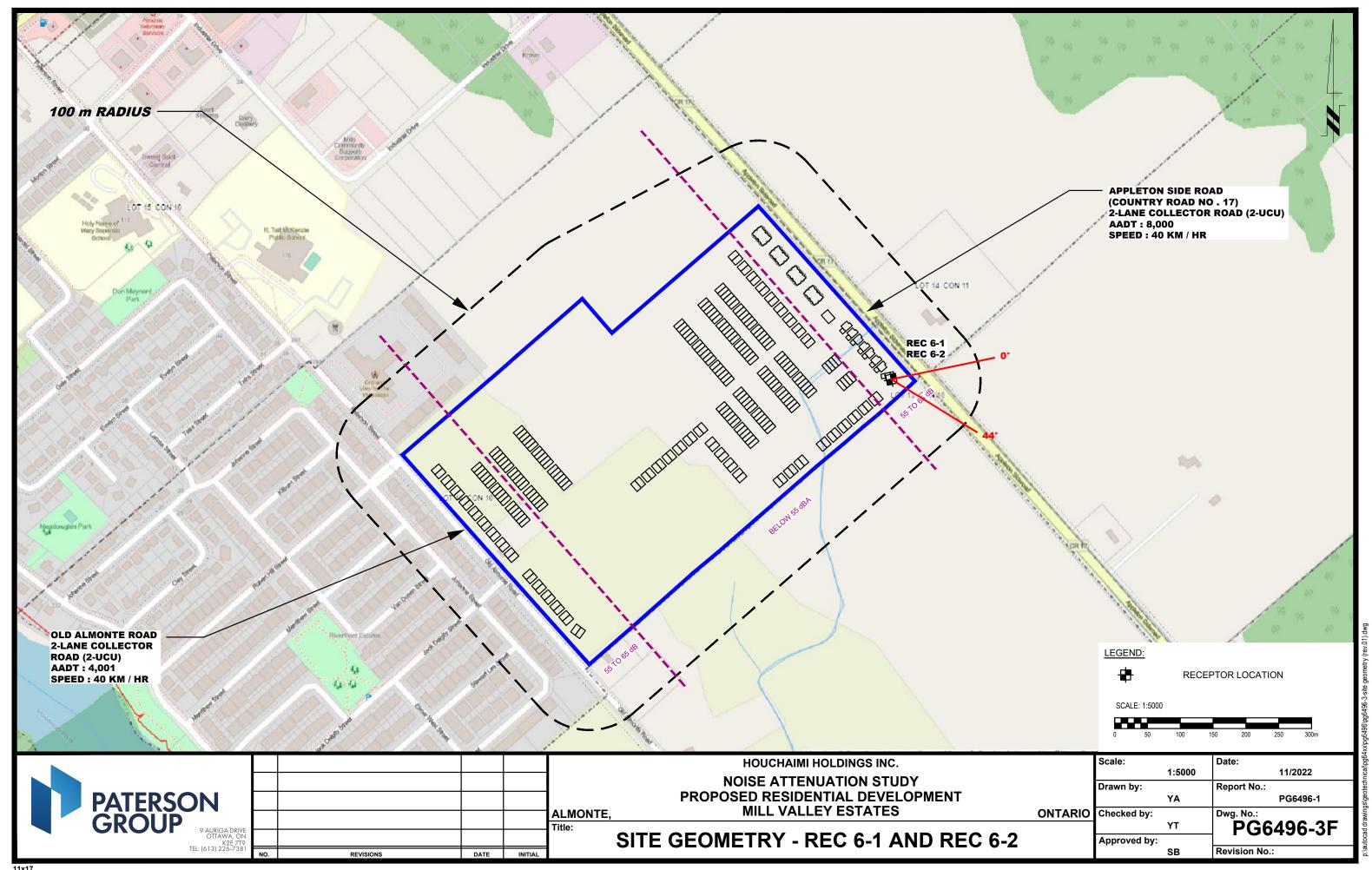

Table 10 - Summary of Reception Points and Geometry Mill Valley Estates (Western Portion of the Site)

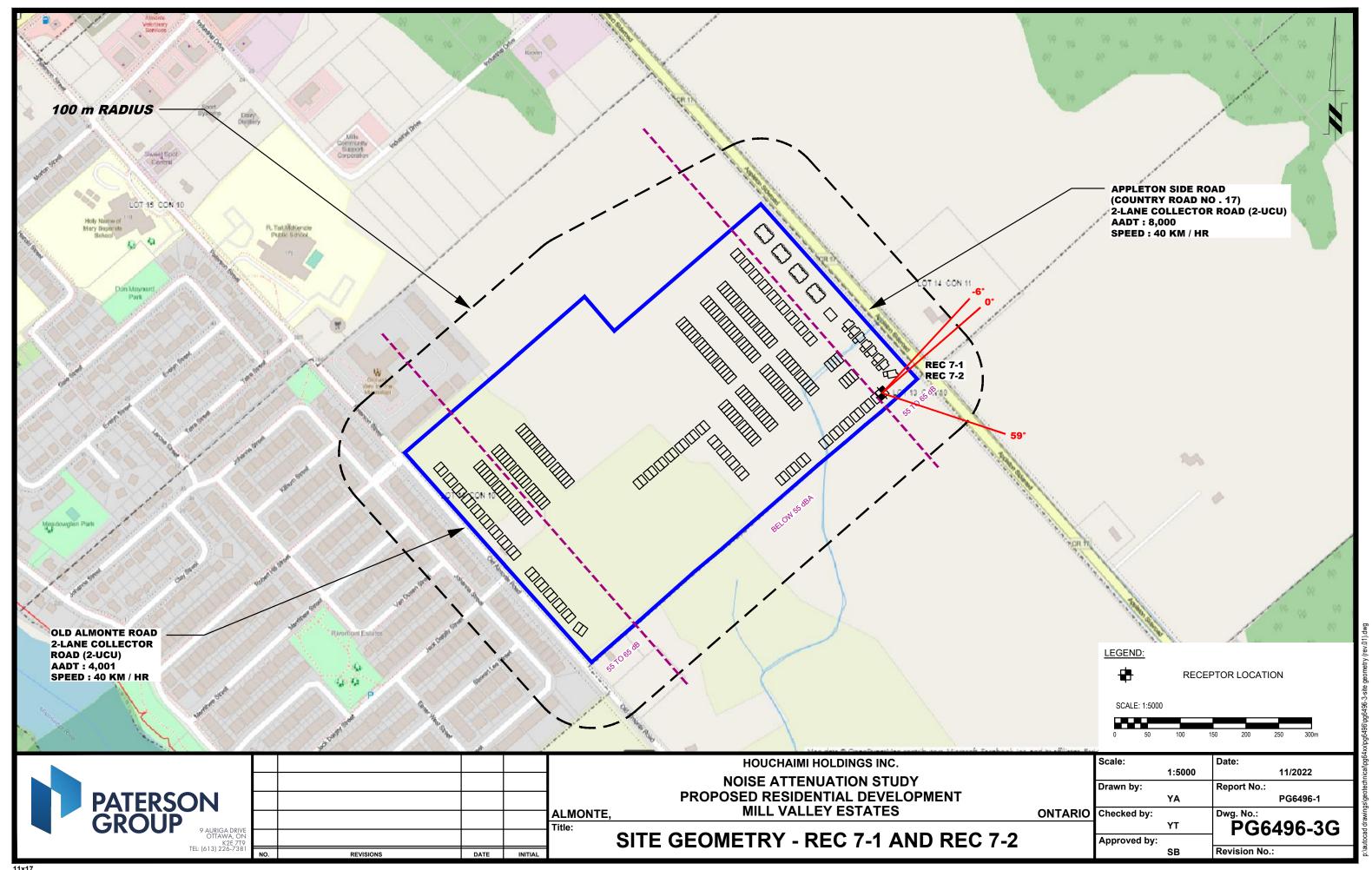

Point of	Location	Law Day	Old Almonte Road											
Reception		Leq Day (dBA)	Horizontal (m)	Vertical (m)	Total (m)	Local Angle (degree)	Number of Rows of Houses	Density (%)		\sim	\sim			\sim
REC 15-1	Single Detached House (south), Western Elevation, 1st Floor	52	40	1.5	40.0	-76, 53	n/a	n/a	\times	\searrow	\nearrow			
REC 15-2	Single Detached House (south), Western Elevation, 2nd Floor	52	40	4.5	40.3	-76, 53	n/a	n/a	\times	\searrow				
REC 16-1	Single Detached House (south), Southern Elevation, 1st Floor	48	45	1.5	45.0	-68, 0	n/a	n/a	>	\nearrow	\nearrow			
REC 16-2	Single Detached House (south), Southern Elevation, 2nd Floor	49	45	4.5	45.2	-68, 0	n/a	n/a	>	\nearrow	\nearrow			
REC 17-1	Townhouse, Western Elevation, 1st Floor	48	60	1.5	60.0	-81, 74	1	20	><	\nearrow	\nearrow			
REC 17-2	Townhouse, Western Elevation, 2nd Floor	49	60	4.5	60.2	-81, 74	1	20	\times	\searrow	\searrow			
REC 18-1	Single Detached House, Western Elevation, 1st Floor	48	60	1.5	60.0	-74, 80	1	20	\times	\searrow				
REC 18-2	Single Detached House, Western Elevation, 2nd Floor	49	60	4.5	60.2	-74, 80	1	20	\times	\searrow				
REC 20	Semi-detached House (north), rear yard	59	15	1.5	15.1	-89, 86	n/a	n/a		$\overline{}$				
REC 21	Semi-detached House (south), rear yard	59	15	1.5	15.1	-89, 88	n/a	n/a		\searrow	\searrow			

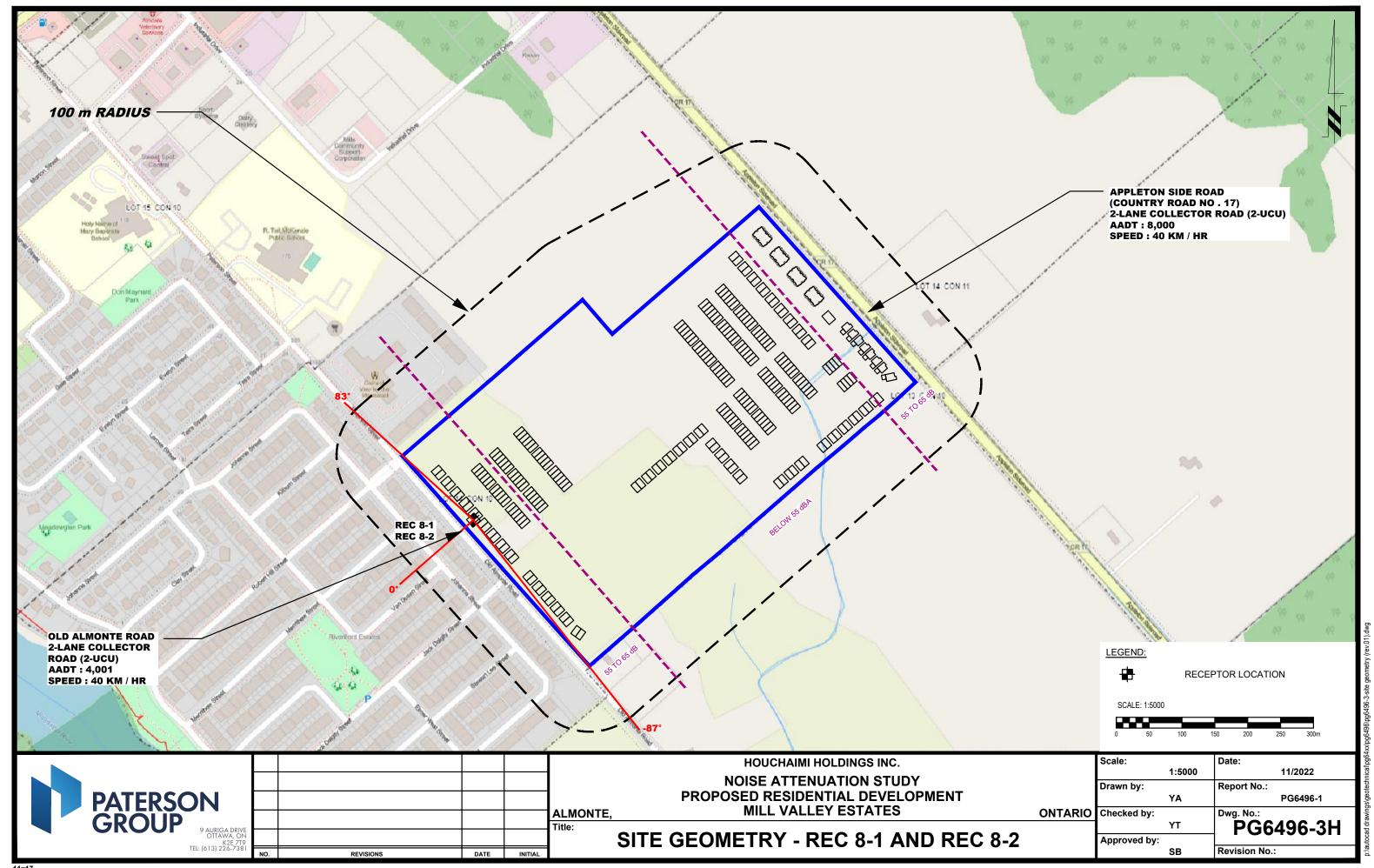


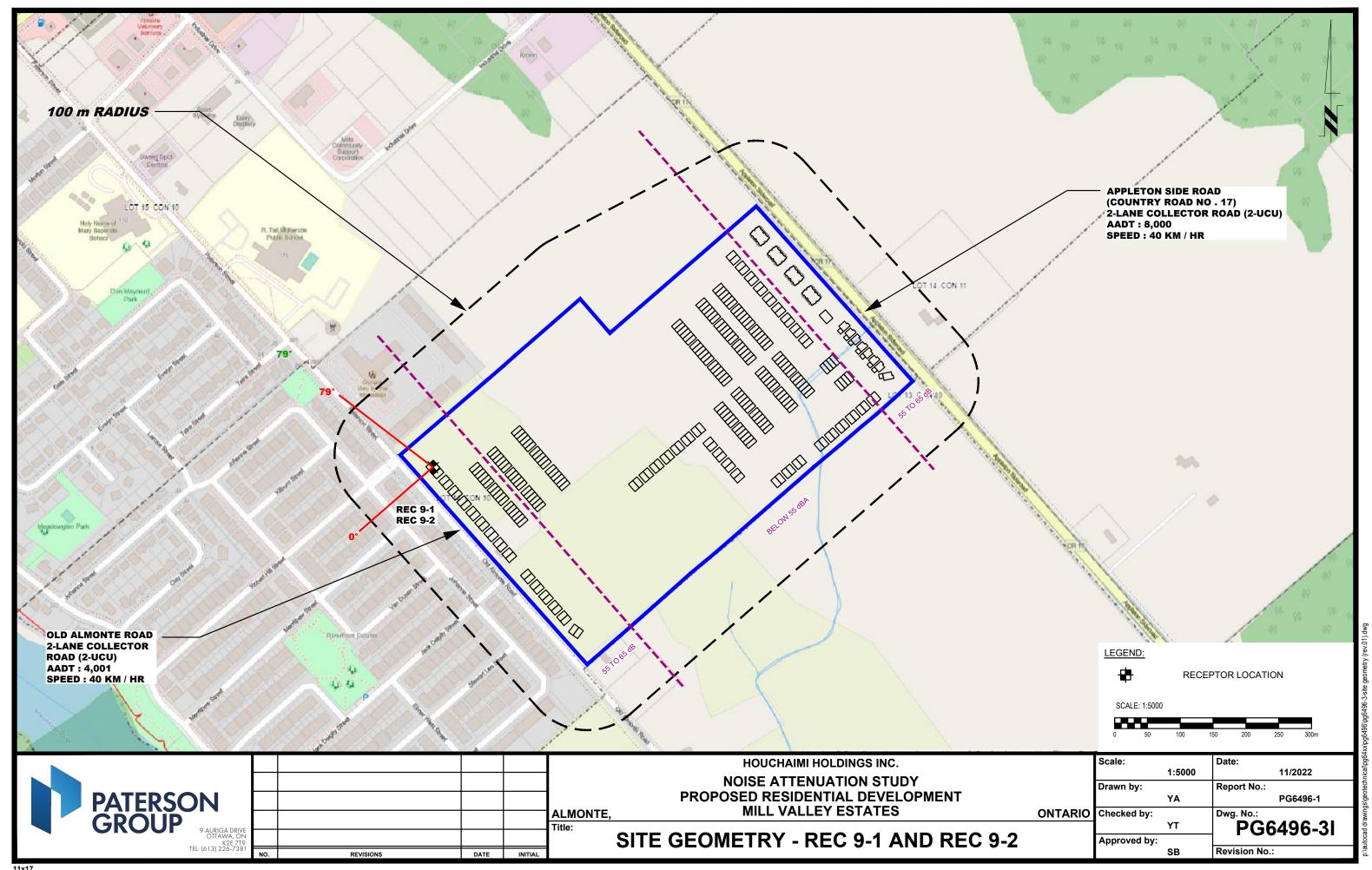


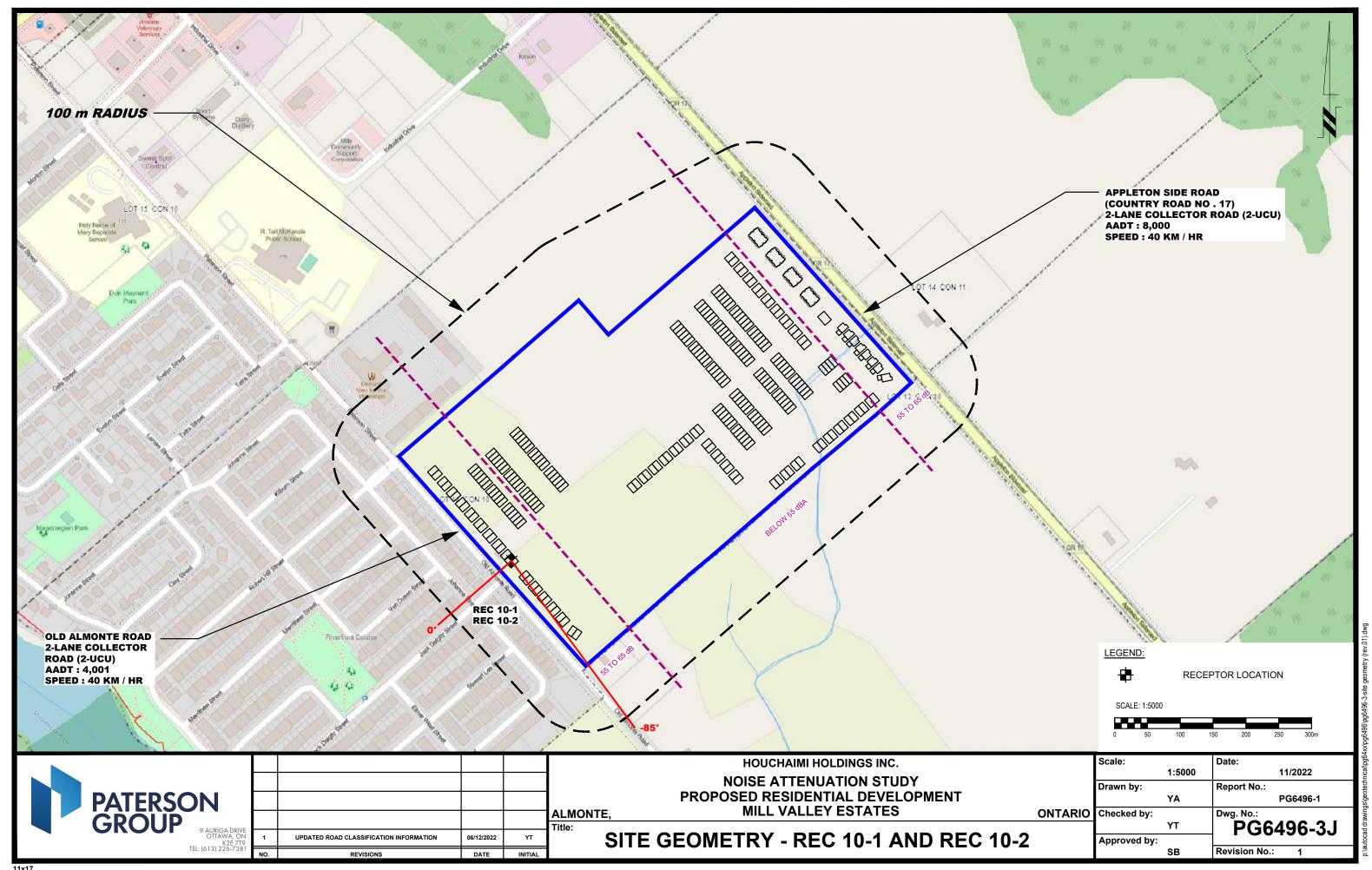


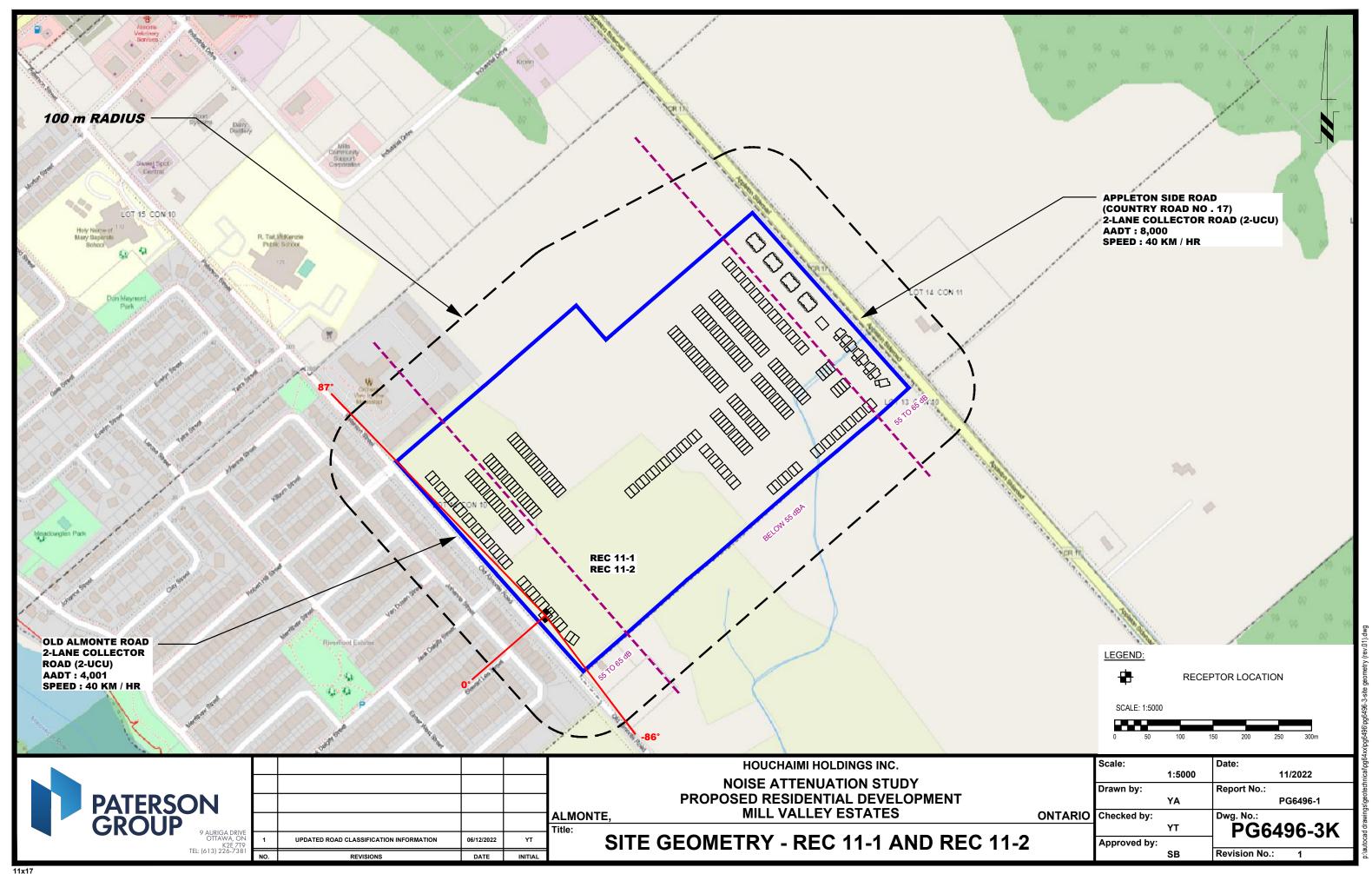


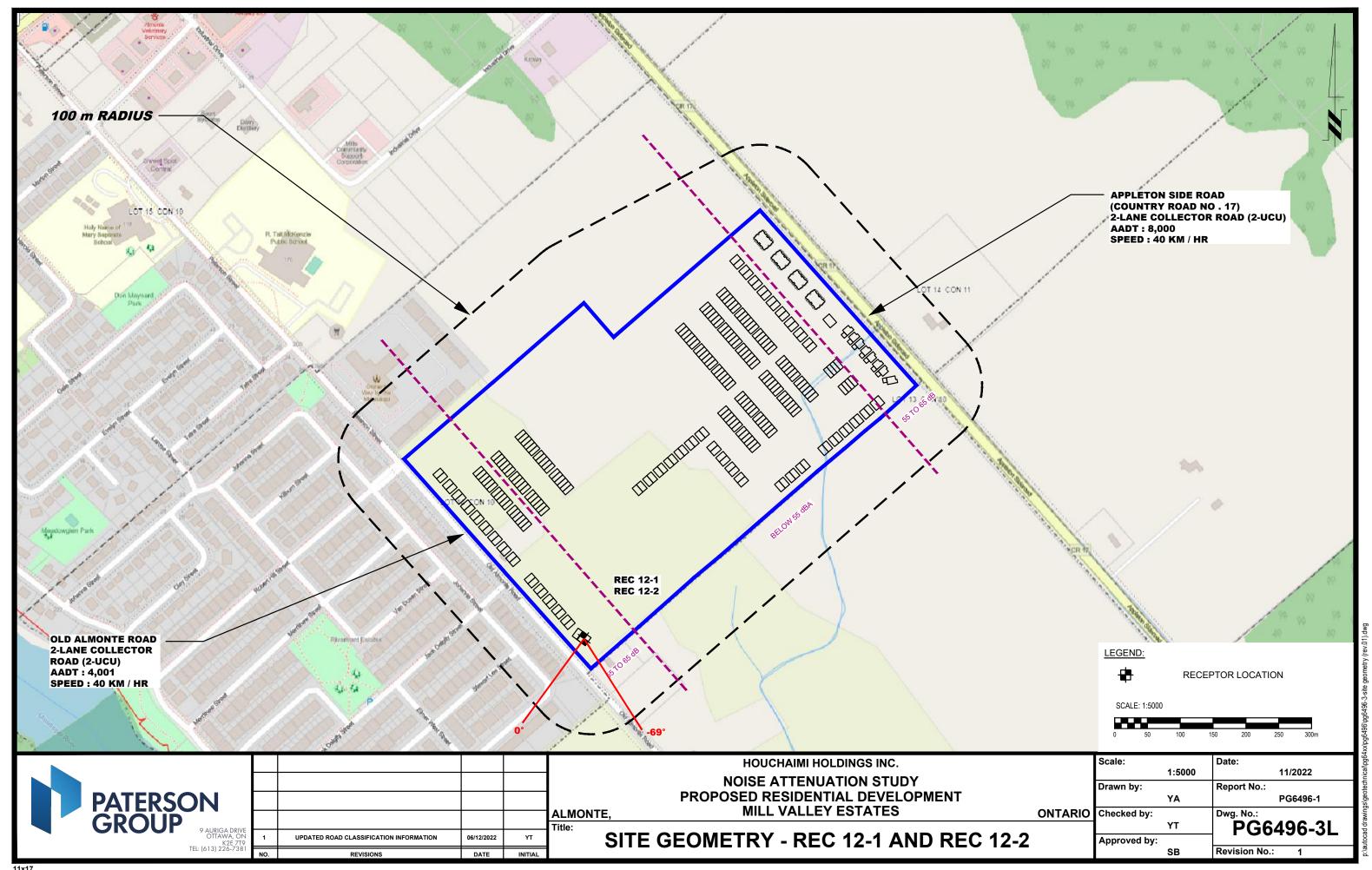


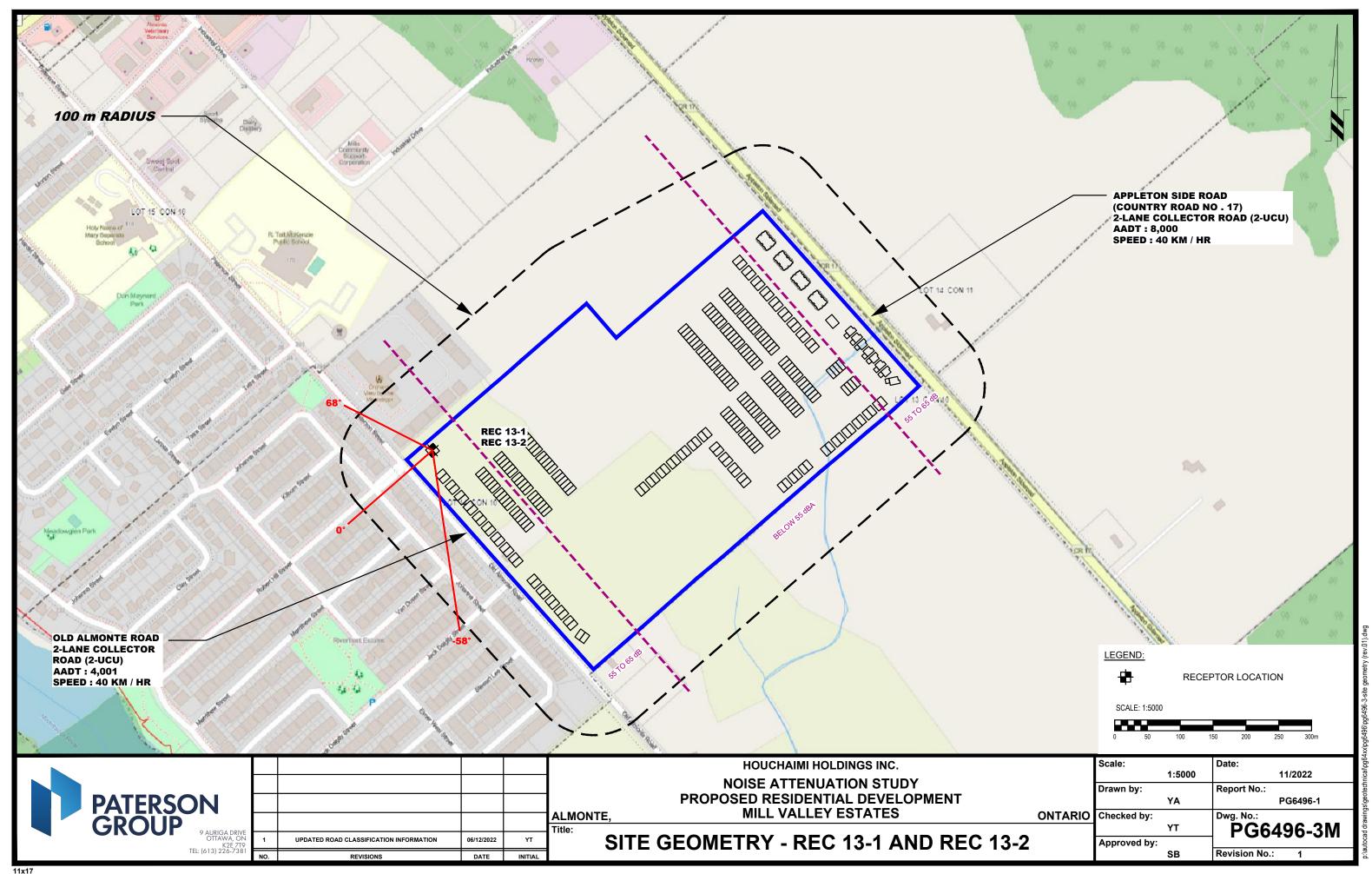


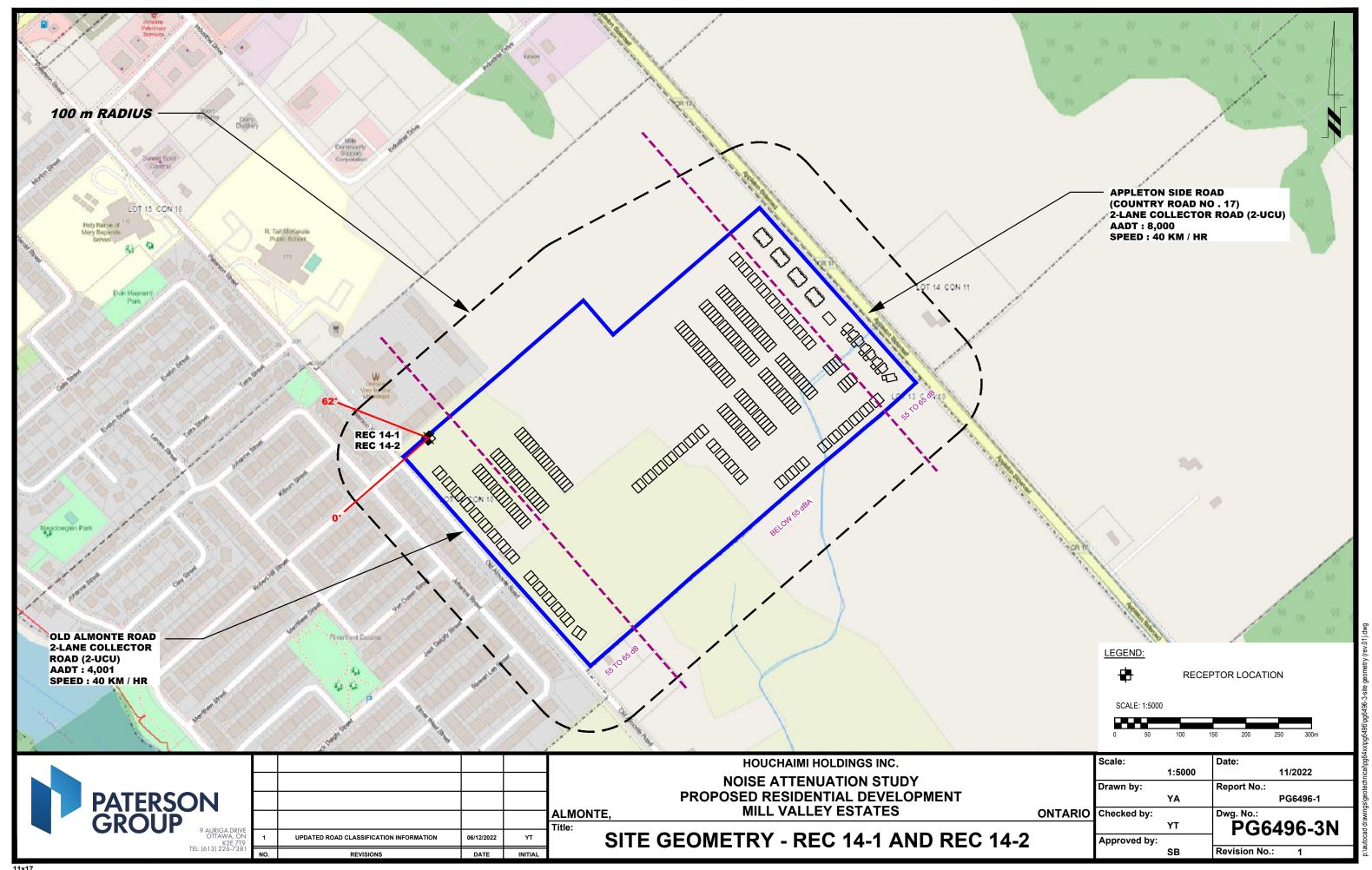


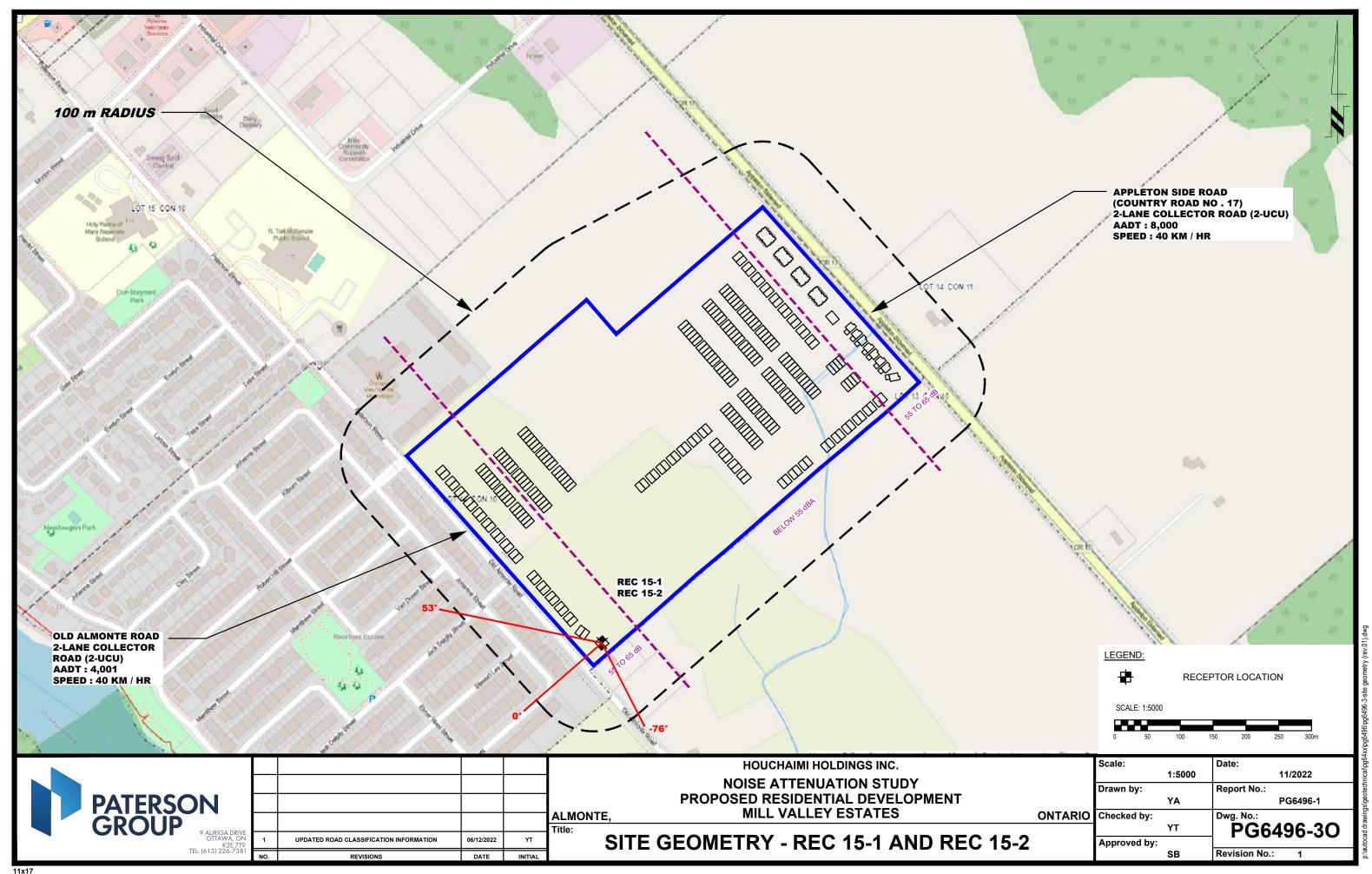


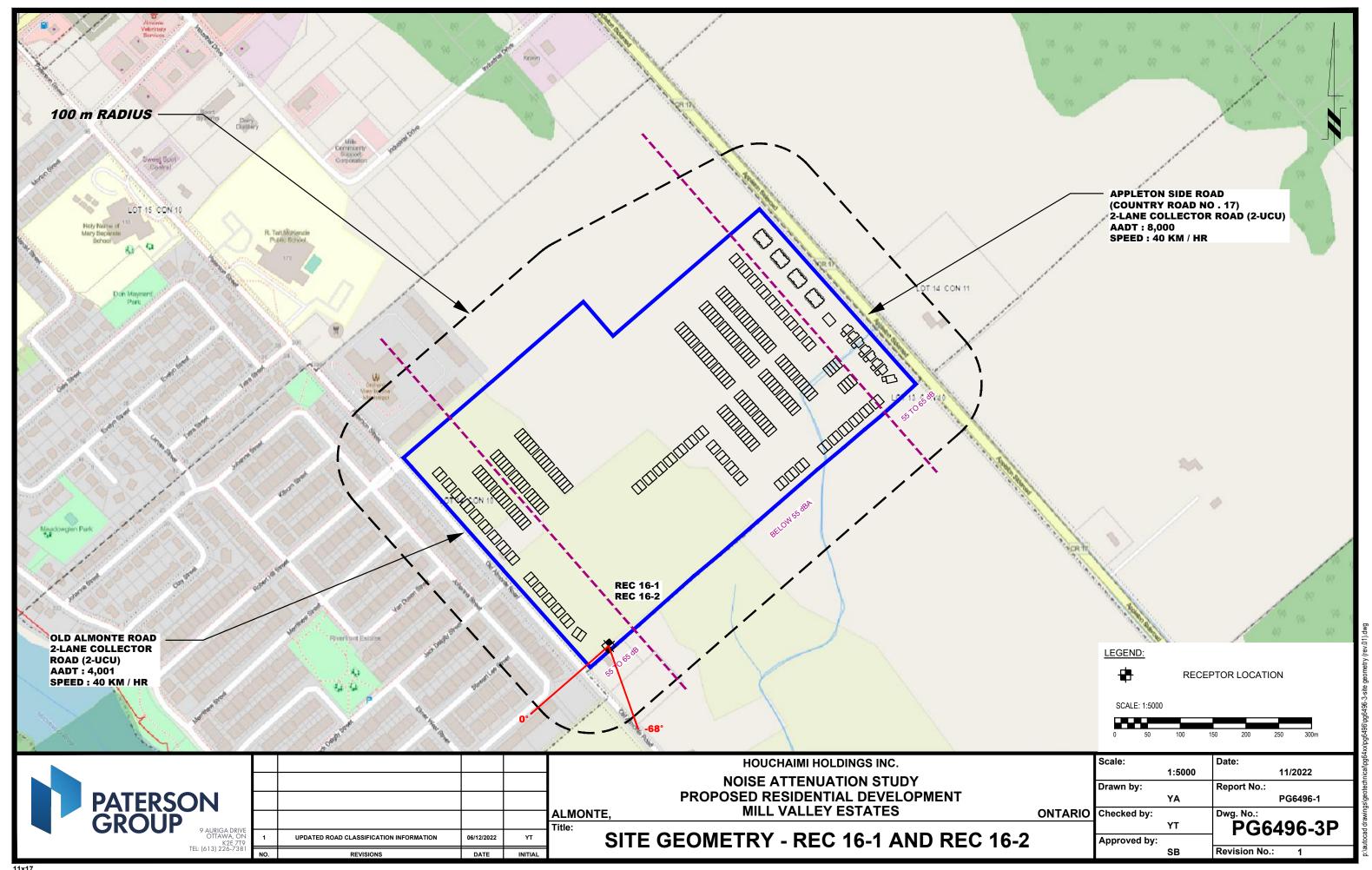


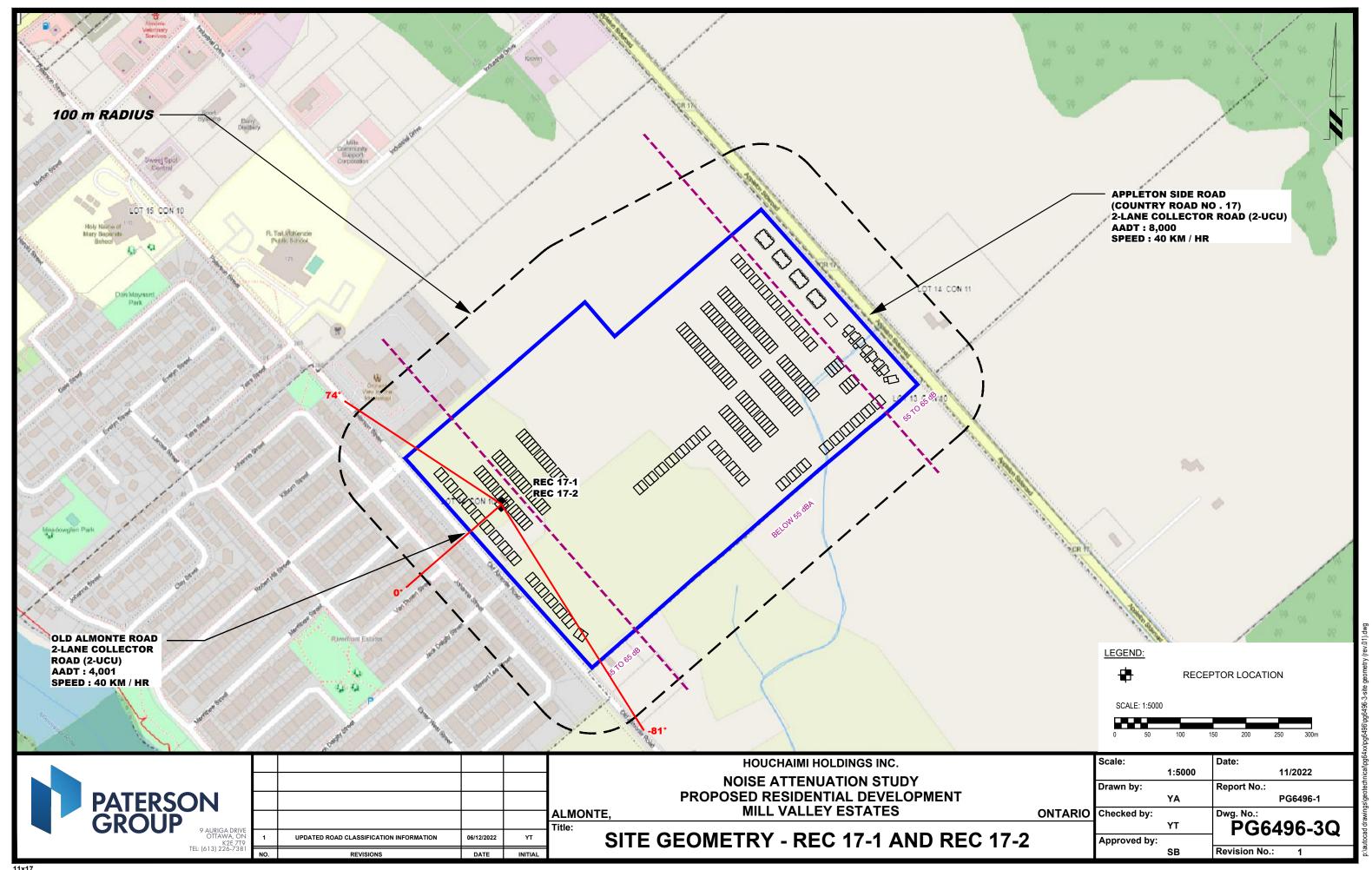


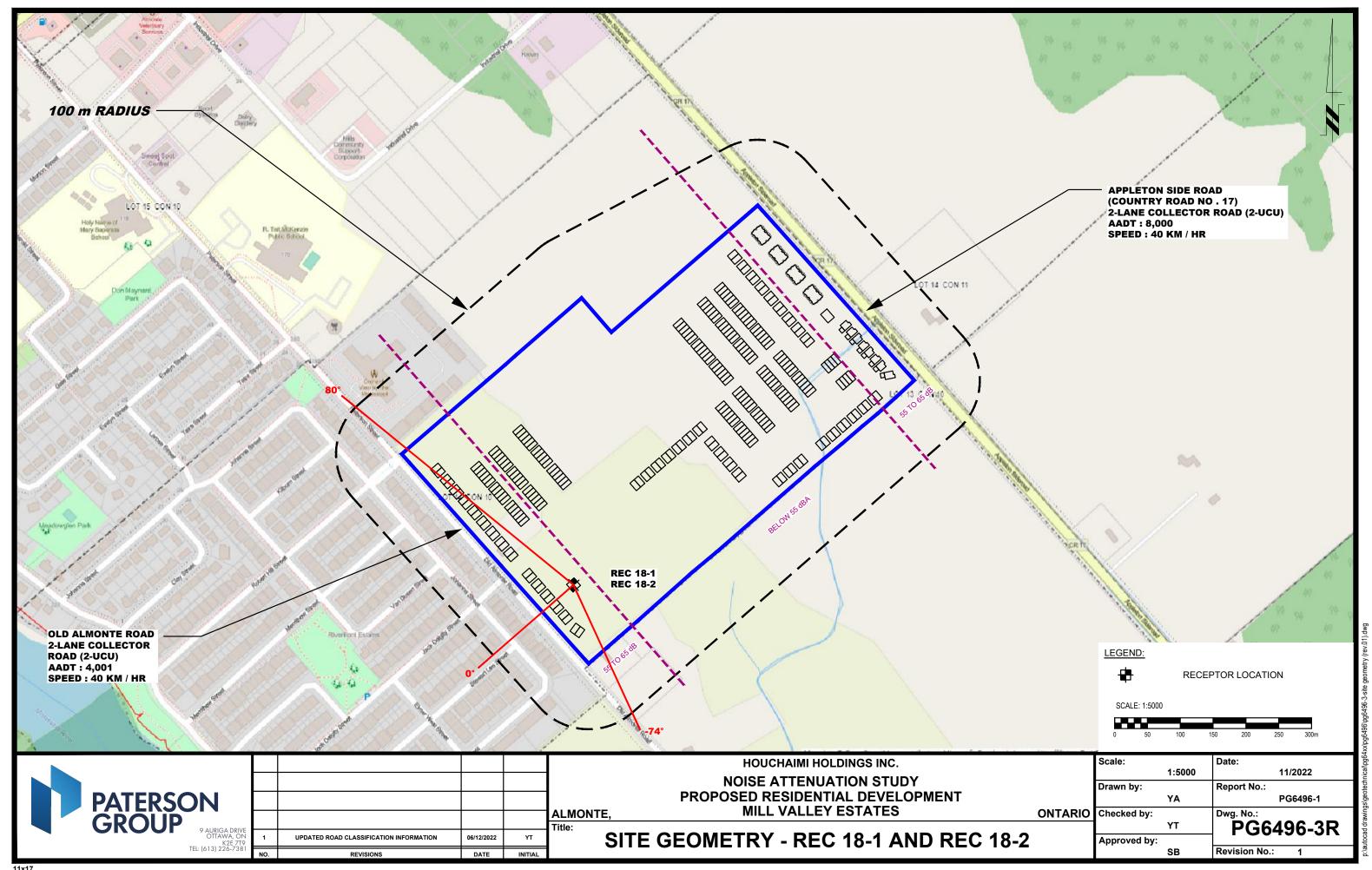


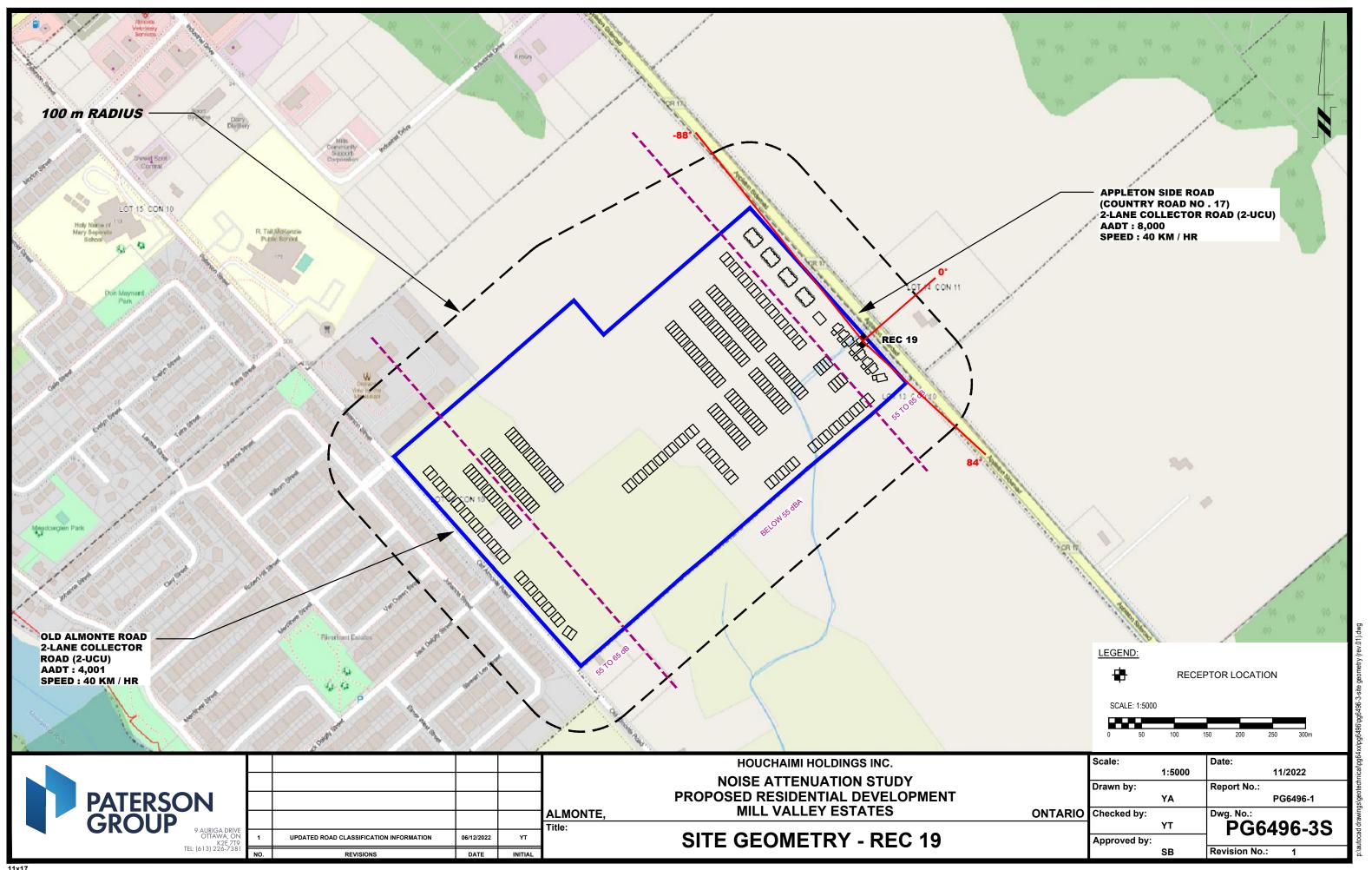


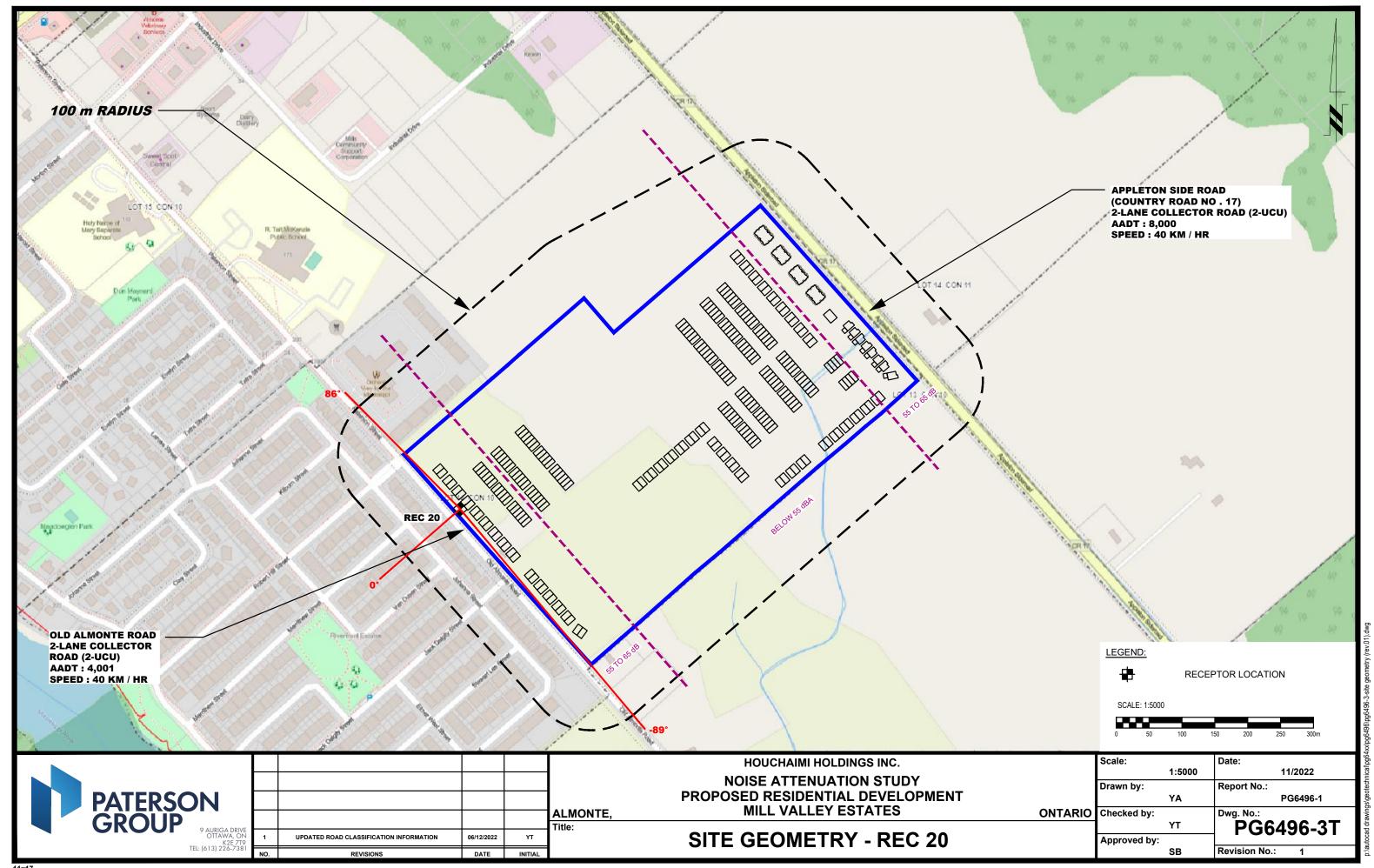


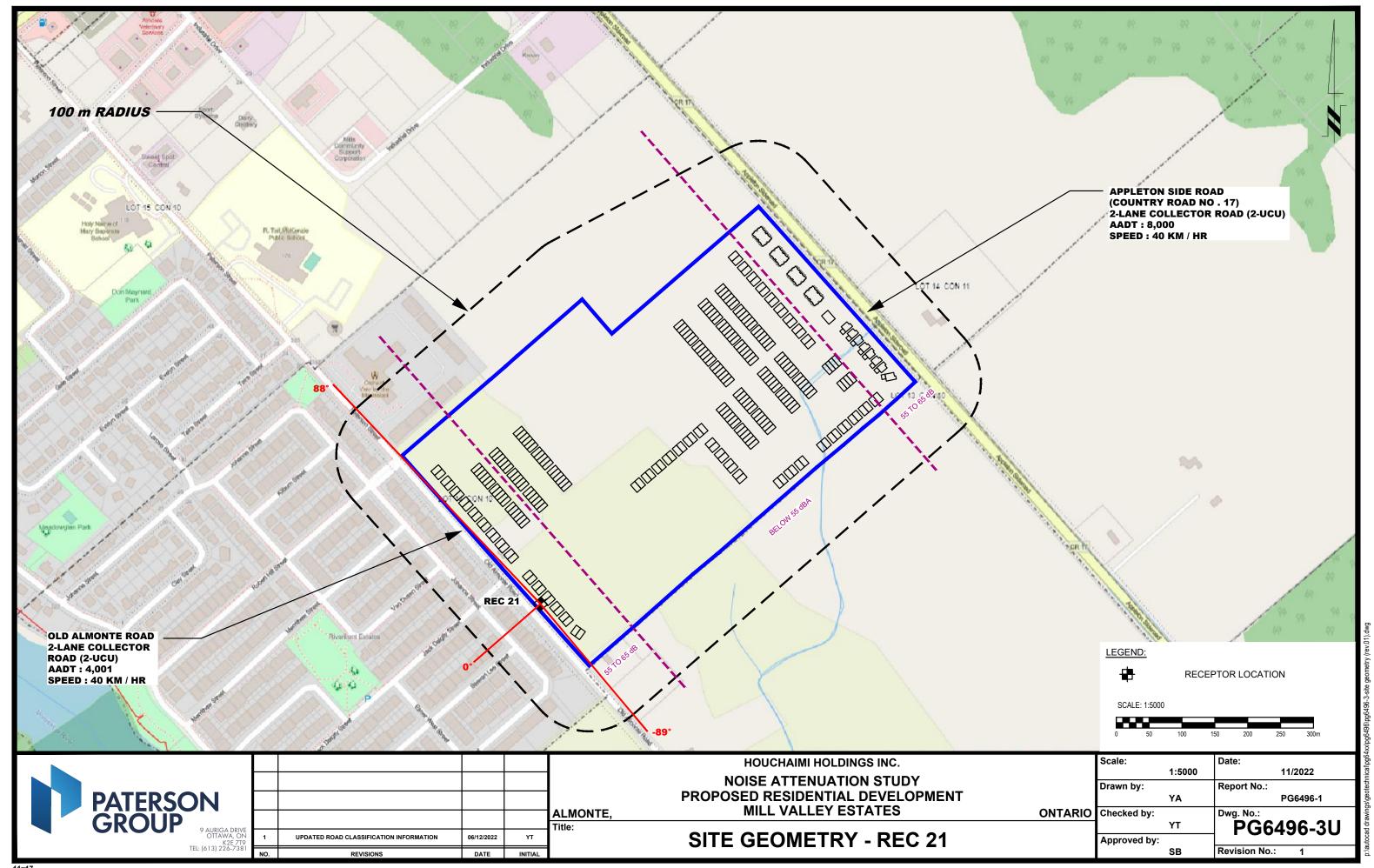


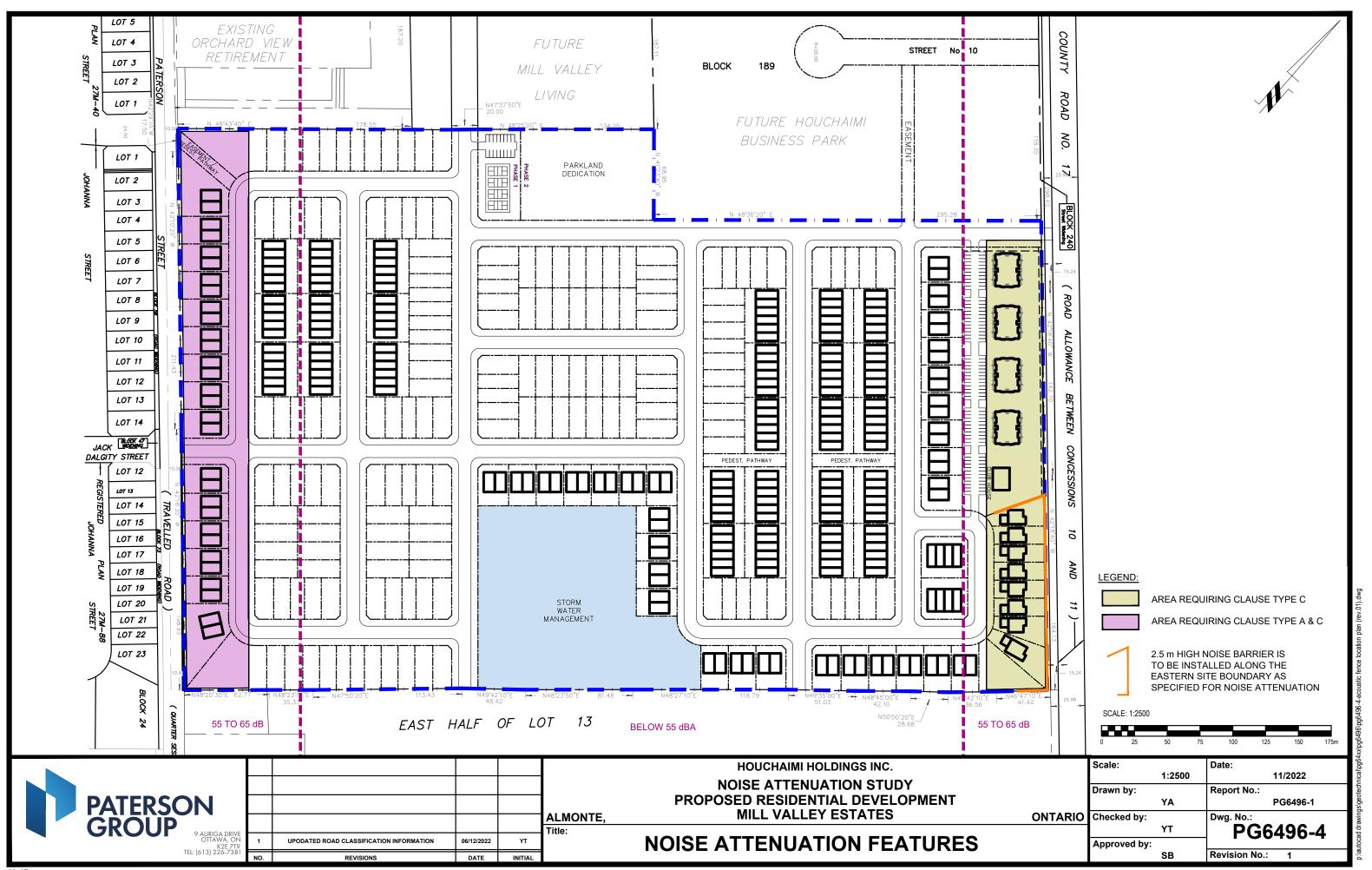












APPENDIX 2

STAMSON RESULTS

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:25:05

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec11.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 1-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -83.00 deg 85.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : -(No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 58.76 + 0.00) = 58.76 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-83 85 0.66 63.96 0.00 -3.68 -1.51 0.00 0.00 0.00 58.76

Segment Leq: 58.76 dBA

```
Total Leq All Segments: 58.76 dBA
```

♠

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

Segment Leq: 51.17 dBA

Total Leq All Segments: 51.17 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 58.76 (NIGHT): 51.17

♠

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:26:54

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec13.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 1-3

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -83.00 deg 85.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : -(No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 8.50 / 8.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 59.56 + 0.00) = 59.56 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -83 85 0.45 63.96 0.00 -3.22 -1.18 0.00 0.00 0.00 59.56

Segment Leq: 59.56 dBA

Total Leq All Segments: 59.56 dBA

♠

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

Segment Leq: 51.97 dBA

Total Leq All Segments: 51.97 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 59.56 (NIGHT): 51.97

♠

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:30:38

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec21.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 2-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -74.00 deg 0.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface (No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 35.00 / 35.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 53.09 + 0.00) = 53.09 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-74 0 0.66 63.96 0.00 -6.11 -4.76 0.00 0.00 0.00 53.09

Segment Leq: 53.09 dBA

Total Leq All Segments: 53.09 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 45.50 + 0.00) = 45.50 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-74 0 0.66 56.36 0.00 -6.11 -4.76 0.00 0.00 0.00 45.50

Segment Leq: 45.50 dBA

Total Leq All Segments: 45.50 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 53.09 (NIGHT): 45.50

♠

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:31:26

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec23.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 2-3

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -74.00 deg 0.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 35.00 / 35.00 m Receiver height : 8.50 / 8.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 54.13 + 0.00) = 54.13 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -74 0 0.45 63.96 0.00 -5.34 -4.49 0.00 0.00 0.00 54.13

Segment Leq: 54.13 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 54.13 (NIGHT): 46.53

↑

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:48:07

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec31.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 3-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : 0.00 deg 82.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 35.00 / 35.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 53.29 + 0.00) = 53.29 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----0 82 0.66 63.96 0.00 -6.11 -4.56 0.00 0.00 0.00 53.29

Segment Leq: 53.29 dBA

```
Total Leq All Segments: 53.29 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 45.70 + 0.00) = 45.70 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 82 0.66 56.36 0.00 -6.11 -4.56 0.00 0.00 0.00 45.70

Segment Leq : 45.70 dBA

Total Leq All Segments: 45.70 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 53.29 (NIGHT): 45.70

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:47:06

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec33.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 3-3

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

: 0.00 deg 82.00 deg Angle1 Angle2 Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 35.00 / 35.00 m Receiver height : 8.50 / 8.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 54.38 + 0.00) = 54.38 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----0 82 0.45 63.96 0.00 -5.34 -4.23 0.00 0.00 0.00 54.38

Segment Leq: 54.38 dBA

```
Total Leq All Segments: 54.38 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 46.79 + 0.00) = 46.79 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 82 0.45 56.36 0.00 -5.34 -4.23 0.00 0.00 0.00 46.79

Segment Leq : 46.79 dBA

Total Leq All Segments: 46.79 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 54.38 (NIGHT): 46.79

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:51:16

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec41.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 4-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -87.00 deg 81.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : -(No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 58.75 + 0.00) = 58.75 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -87 81 0.66 63.96 0.00 -3.68 -1.52 0.00 0.00 0.00 58.75

Segment Leq: 58.75 dBA

```
Total Leq All Segments: 58.75 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 51.16 + 0.00) = 51.16 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-87 81 0.66 56.36 0.00 -3.68 -1.52 0.00 0.00 0.00 51.16

Segment Leq : 51.16 dBA

Total Leq All Segments: 51.16 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 58.75 (NIGHT): 51.16

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 14:54:27

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec42.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 4-2

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -87.00 deg 81.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : -(No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 59.09 + 0.00) = 59.09 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -87 81 0.57 63.96 0.00 -3.48 -1.38 0.00 0.00 0.00 59.09

Segment Leq: 59.09 dBA

```
Total Leq All Segments: 59.09 dBA
```

•

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

Segment Leq: 51.50 dBA

Total Leq All Segments: 51.50 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 59.09 (NIGHT): 51.50

♠

1

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 15:01:45

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec51.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 5-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -85.00 deg 0.00 deg Wood depth : 0
No of house rows : 0 / 0 (No woods.)

0 / 0

1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 54.45 + 0.00) = 54.45 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -85 0 0.66 63.96 0.00 -5.00 -4.51 0.00 0.00 0.00 54.45

Segment Leq: 54.45 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 54.45 (NIGHT): 46.86

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 15:03:55

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec52.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 5-2

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -85.00 deg 0.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : 1 (No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 54.86 + 0.00) = 54.86 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-85 0 0.57 63.96 0.00 -4.73 -4.37 0.00 0.00 0.00 54.86

Segment Leq: 54.86 dBA

```
Total Leq All Segments: 54.86 dBA
Results segment # 1: AppletonSide (night)
Source height = 1.50 m
ROAD (0.00 + 47.27 + 0.00) = 47.27 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
  -85 0 0.57 56.36 0.00 -4.73 -4.37 0.00 0.00 0.00 47.27
Segment Leq: 47.27 dBA
```

Total Leq All Segments: 47.27 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 54.86 (NIGHT): 47.27

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 15:17:32

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec61.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 6-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : 0.00 deg 44.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 52.55 + 0.00) = 52.55 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----0 44 0.66 63.96 0.00 -5.00 -6.41 0.00 0.00 0.00 52.55

Segment Leq: 52.55 dBA

```
Total Leq All Segments: 52.55 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 44.96 + 0.00) = 44.96 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 44 0.66 56.36 0.00 -5.00 -6.41 0.00 0.00 0.00 44.96

Segment Leq : 44.96 dBA
```

Total Leq All Segments: 44.96 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 52.55 (NIGHT): 44.96

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 15:18:07

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec62.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 6-2

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : 0.00 deg 44.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 52.86 + 0.00) = 52.86 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----0 44 0.57 63.96 0.00 -4.73 -6.37 0.00 0.00 0.00 52.86

Segment Leq: 52.86 dBA

```
Total Leq All Segments: 52.86 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 45.26 + 0.00) = 45.26 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 44 0.57 56.36 0.00 -4.73 -6.37 0.00 0.00 0.00 45.26

Segment Leq : 45.26 dBA
```

Total Leq All Segments: 45.26 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 52.86 (NIGHT): 45.26

^

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 15:37:36

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec71.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 7-1

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -6.00 deg 59.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 49.05 + 0.00) = 49.05 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------6 59 0.66 63.96 0.00 -9.99 -4.91 0.00 0.00 0.00 49.05

Segment Leq: 49.05 dBA

```
Total Leq All Segments: 49.05 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 41.46 + 0.00) = 41.46 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-6 59 0.66 56.36 0.00 -9.99 -4.91 0.00 0.00 0.00 41.46

Segment Leq : 41.46 dBA

Total Leq All Segments: 41.46 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 49.05 (NIGHT): 41.46 ♠

STAMSON 5.0 NORMAL REPORT Date: 18-11-2022 15:38:55

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec72.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 7-2

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -6.00 deg 59.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 49.65 + 0.00) = 49.65 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------6 59 0.57 63.96 0.00 -9.45 -4.85 0.00 0.00 0.00 49.65

Segment Leq: 49.65 dBA

```
Total Leq All Segments: 49.65 dBA
```

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 42.06 + 0.00) = 42.06 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-6 59 0.57 56.36 0.00 -9.45 -4.85 0.00 0.00 0.00 42.06

Segment Leq: 42.06 dBA

Total Leq All Segments: 42.06 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 49.65 (NIGHT): 42.06

♠

♠

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:05:59

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec81.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 8-1

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -87.00 deg 83.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : 1 (No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

: 0.00 Reference angle

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 55.76 + 0.00) = 55.76 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-87 83 0.66 60.95 0.00 -3.68 -1.50 0.00 0.00 0.00 55.76

Segment Leq: 55.76 dBA

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:07:43

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec82.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 8-2

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -87.00 deg 83.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 56.10 + 0.00) = 56.10 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-87 83 0.57 60.95 0.00 -3.48 -1.36 0.00 0.00 0.00 56.10

Segment Leq: 56.10 dBA

```
Total Leq All Segments: 56.10 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 48.49 + 0.00) = 48.49 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-87 83 0.57 53.34 0.00 -3.48 -1.36 0.00 0.00 48.49

Segment Leq : 48.49 dBA

Total Leq All Segments: 48.49 dBA

Total Leq FROM ALL SOURCES (DAY): 56.10
```

(NIGHT): 48.49

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:10:40

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec91.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 9-1

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : 0.00 deg 79.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.33 + 0.00) = 51.33 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----

0 79 0.66 60.95 0.00 -5.00 -4.62 0.00 0.00 0.00 51.33

Segment Leq: 51.33 dBA

```
Total Leq All Segments: 51.33 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 43.72 + 0.00) = 43.72 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 79 0.66 53.34 0.00 -5.00 -4.62 0.00 0.00 0.00 43.72

Segment Leq : 43.72 dBA

Total Leq All Segments: 43.72 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 51.33 (NIGHT): 43.72

1 ♠

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:12:29

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec92.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 9-2

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : 0.00 deg 79.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.72 + 0.00) = 51.72 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----0 79 0.57 60.95 0.00 -4.73 -4.50 0.00 0.00 0.00 51.72

Segment Leq: 51.72 dBA

```
Total Leq All Segments: 51.72 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 44.11 + 0.00) = 44.11 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 79 0.57 53.34 0.00 -4.73 -4.50 0.00 0.00 0.00 44.11

Segment Leq : 44.11 dBA

Total Leq All Segments: 44.11 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 51.72

(NIGHT): 44.11
```

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:13:56

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec101.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 10-1

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -85.00 deg 0.00 deg

Wood depth : 0
No of house rows : 0 / 0
Surface : 1 (No woods.)

0 , 1 ' 30 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.44 + 0.00) = 51.44 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-85 0 0.66 60.95 0.00 -5.00 -4.51 0.00 0.00 0.00 51.44

Segment Leq: 51.44 dBA

```
Total Leq All Segments: 51.44 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 43.83 + 0.00) = 43.83 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-85 0 0.66 53.34 0.00 -5.00 -4.51 0.00 0.00 0.00 43.83

Segment Leq : 43.83 dBA

Total Leq All Segments: 43.83 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 51.44 (NIGHT): 43.83

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:15:41

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec102.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 10-2

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -85.00 deg 0.00 deg

Wood depth : 0
No of house rows : 0 / 0
Surface : 1 (No woods.)

0 , 1 ' 30 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.85 + 0.00) = 51.85 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-85 0 0.57 60.95 0.00 -4.73 -4.37 0.00 0.00 0.00 51.85

Segment Leq: 51.85 dBA

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:17:24

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec111.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 11-1

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -86.00 deg 87.00 deg wood depth : 0
No of house rows : 0 / 0
Surface (No woods.)

0 / 1 / 25 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 55.78 + 0.00) = 55.78 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -86 87 0.66 60.95 0.00 -3.68 -1.48 0.00 0.00 0.00 55.78

Segment Leq: 55.78 dBA

```
Total Leq All Segments: 55.78 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 48.17 + 0.00) = 48.17 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-86 87 0.66 53.34 0.00 -3.68 -1.48 0.00 0.00 0.00 48.17

Segment Leq : 48.17 dBA

Total Leq All Segments: 48.17 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 55.78 (NIGHT): 48.17

T

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:19:01

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec112.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 11-2

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -86.00 deg 87.00 deg wood depth : 0
No of house rows : 0 / 0
Surface (No woods.)

0 , 1 , 25 (Absorptive ground surface)

Receiver source distance : 25.00 / 25.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 56.13 + 0.00) = 56.13 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-86 87 0.57 60.95 0.00 -3.48 -1.33 0.00 0.00 0.00 56.13

Segment Leq: 56.13 dBA

```
Total Leq All Segments: 56.13 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 48.52 + 0.00) = 48.52 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-86 87 0.57 53.34 0.00 -3.48 -1.33 0.00 0.00 0.00 48.52

Segment Leq : 48.52 dBA

Total Leq All Segments: 48.52 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 56.13 (NIGHT): 48.52

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:21:12

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec121.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 12-1

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -69.00 deg 0.00 deg (No woods.)

Wood depth : 0
No of house rows : 0 / 0
Surface

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.02 + 0.00) = 51.02 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-69 0 0.66 60.95 0.00 -5.00 -4.93 0.00 0.00 0.00 51.02

Segment Leq: 51.02 dBA

```
Total Leq All Segments: 51.02 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 43.41 + 0.00) = 43.41 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-69 0 0.66 53.34 0.00 -5.00 -4.93 0.00 0.00 0.00 43.41

Segment Leq : 43.41 dBA

Total Leq All Segments: 43.41 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 51.02 (NIGHT): 43.41 ♠

1

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:22:43

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec122.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 12-2

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -69.00 deg 0.00 deg Wood depth Wood depth : 0
No of house rows : 0 / 0
Surface : 1 (No woods.)

(Absorptive ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.39 + 0.00) = 51.39 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-69 0 0.57 60.95 0.00 -4.73 -4.83 0.00 0.00 0.00 51.39

Segment Leq: 51.39 dBA

```
Total Leq All Segments: 51.39 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 43.78 + 0.00) = 43.78 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-69 0 0.57 53.34 0.00 -4.73 -4.83 0.00 0.00 0.00 43.78

Segment Leq : 43.78 dBA

Total Leq All Segments: 43.78 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 51.39 (NIGHT): 43.78

™

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:24:32

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec131.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 13-1

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -58.00 deg 68.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface

0 / 0
1 (Absorptive ground surface)

Receiver source distance : 40.00 / 40.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.69 + 0.00) = 51.69 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-58 68 0.66 60.95 0.00 -7.07 -2.19 0.00 0.00 0.00 51.69

Segment Leq: 51.69 dBA

```
↑
Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 44.08 + 0.00) = 44.08 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-58 68 0.66 53.34 0.00 -7.07 -2.19 0.00 0.00 0.00 44.08

Segment Leq : 44.08 dBA

Total Leq All Segments: 44.08 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 51.69 (NIGHT): 44.08 ♠

•

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:26:17

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec132.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 13-2

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 30.00 deg (No woods.) Angle1 Angle2 : -58.00 deg 68.00 deg

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 40.00 / 40.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 52.15 + 0.00) = 52.15 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -58 68 0.57 60.95 0.00 -6.69 -2.11 0.00 0.00 0.00 52.15

Segment Leq: 52.15 dBA

```
Total Leq All Segments: 52.15 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 44.54 + 0.00) = 44.54 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-58 68 0.57 53.34 0.00 -6.69 -2.11 0.00 0.00 0.00 44.54

Segment Leq : 44.54 dBA

Total Leq All Segments: 44.54 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 52.15 (NIGHT): 44.54

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:27:59

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec141.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 14-1

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : 0.00 deg 62.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 45.00 / 45.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 47.79 + 0.00) = 47.79 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----

62 0.66 60.95 0.00 -7.92 -5.23 0.00 0.00 0.00 47.79 0

Segment Leq: 47.79 dBA

```
Total Leq All Segments: 47.79 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 40.18 + 0.00) = 40.18 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 62 0.66 53.34 0.00 -7.92 -5.23 0.00 0.00 0.00 40.18

Segment Leq : 40.18 dBA

Total Leq All Segments: 40.18 dBA
```

(NIGHT): 40.18

TOTAL Leq FROM ALL SOURCES (DAY): 47.79

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:29:12 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec142.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 14-2

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : 0.00 deg 62.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 45.00 / 45.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 48.30 + 0.00) = 48.30 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----

0 62 0.57 60.95 0.00 -7.49 -5.15 0.00 0.00 0.00 48.30

Segment Leq: 48.30 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 48.30 (NIGHT): 40.69 ♠

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:30:41

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec151.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 15-1

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -76.00 deg 53.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 40.00 / 40.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 51.70 + 0.00) = 51.70 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-76 53 0.66 60.95 0.00 -7.07 -2.18 0.00 0.00 0.00 51.70

Segment Leq: 51.70 dBA

```
Total Leq All Segments: 51.70 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 44.09 + 0.00) = 44.09 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-76 53 0.66 53.34 0.00 -7.07 -2.18 0.00 0.00 0.00 44.09

Segment Leq : 44.09 dBA

Total Leq All Segments: 44.09 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 51.70

(NIGHT): 44.09
```

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:31:27 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec152.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 15-2

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -76.00 deg 53.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 40.00 / 40.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 52.17 + 0.00) = 52.17 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-76 53 0.57 60.95 0.00 -6.69 -2.09 0.00 0.00 0.00 52.**1**7

Segment Leq: 52.17 dBA

```
Total Leq All Segments: 52.17 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 44.56 + 0.00) = 44.56 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-76 53 0.57 53.34 0.00 -6.69 -2.09 0.00 0.00 0.00 44.56

Segment Leq : 44.56 dBA

Total Leq All Segments: 44.56 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 52.17 (NIGHT): 44.56

↑

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:33:02

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec161.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 16-1

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -68.00 deg 0.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 45.00 / 45.00 m Receiver height : 1.50 / 1.50 m

: Topography 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 48.06 + 0.00) = 48.06 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-68 0 0.66 60.95 0.00 -7.92 -4.97 0.00 0.00 0.00 48.06

Segment Leq: 48.06 dBA

^

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:33:49

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec162.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 16-2

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night)

Angle1 Angle2 : -68.00 deg 0.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 45.00 / 45.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 48.58 + 0.00) = 48.58 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-68 0 0.57 60.95 0.00 -7.49 -4.87 0.00 0.00 0.00 48.58

Segment Leq: 48.58 dBA

```
Total Leq All Segments: 48.58 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 40.97 + 0.00) = 40.97 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-68 0 0.57 53.34 0.00 -7.49 -4.87 0.00 0.00 0.00 40.97

Segment Leq : 40.97 dBA

Total Leq All Segments: 40.97 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 48.58 (NIGHT): 40.97

^

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:38:22 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec171.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 17-1

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient : 0 %

Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) -----

Angle1 Angle2 : -81.00 deg 74.00 deg Wood depth : 0 (No woods.)

Wood depth

No of house rows

House density

No depth

1 / 1

20 %

Surface : 1 (Absorptive ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

: 0.00 Reference angle

Results segment # 1: Old Almonte (day)

Source height = 1.50 m

ROAD (0.00 + 48.40 + 0.00) = 48.40 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

______ -81 74 0.66 60.95 0.00 -9.99 -1.65 0.00 -0.90 0.00 48.40

Segment Leq: 48.40 dBA

(NIGHT): 40.79

TOTAL Leq FROM ALL SOURCES (DAY): 48.40

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:39:48

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec172.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 17-2

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) -----

Angle1 Angle2 : -81.00 deg 74.00 deg Wood depth : 0 (No woods.)

No of house rows : 1 / 1
House density : 20 %
Surface : 1

(Absorptive ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

: 0.00 Reference angle

Results segment # 1: Old Almonte (day)

Source height = 1.50 m

ROAD (0.00 + 49.06 + 0.00) = 49.06 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-81 74 0.57 60.95 0.00 -9.45 -1.53 0.00 -0.90 0.00 49.06

Segment Leq: 49.06 dBA

```
Total Leq All Segments: 49.06 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 41.45 + 0.00) = 41.45 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-81 74 0.57 53.34 0.00 -9.45 -1.53 0.00 -0.90 0.00 41.45

Segment Leq : 41.45 dBA

Total Leq All Segments: 41.45 dBA

*

TOTAL Leq FROM ALL SOURCES (DAY): 49.06

(NIGHT): 41.45
```

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:41:34 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec181.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 18-1

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -74.00 deg 80.00 deg Wood depth : 0 (No woods.)

No of house rows : 1 / 1
House density : 20 %
Surface : 1

(Absorptive ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

: 0.00 Reference angle

Results segment # 1: Old Almonte (day)

Source height = 1.50 m

ROAD (0.00 + 48.39 + 0.00) = 48.39 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-74 80 0.66 60.95 0.00 -9.99 -1.67 0.00 -0.90 0.00 48.39

Segment Leq: 48.39 dBA

```
Total Leq All Segments: 48.39 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 40.78 + 0.00) = 40.78 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-74 80 0.66 53.34 0.00 -9.99 -1.67 0.00 -0.90 0.00 40.78

Segment Leq : 40.78 dBA

Total Leq All Segments: 40.78 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 48.39
```

(NIGHT): 40.78

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:42:43 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec182.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 18-2

Road data, segment # 1: Old Almonte (day/night) -----

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -74.00 deg 80.00 deg Wood depth : 0 (No woods.)

No of house rows : 1 / 1
House density : 20 %
Surface : 1

(Absorptive ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 4.50 / 4.50 m

: 1 (Flat/gentle slope; no barrier) Topography

: 0.00 Reference angle

Results segment # 1: Old Almonte (day)

Source height = 1.50 m

ROAD (0.00 + 49.05 + 0.00) = 49.05 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-74 80 0.57 60.95 0.00 -9.45 -1.55 0.00 -0.90 0.00 49.05

Segment Leq: 49.05 dBA

```
Total Leq All Segments: 49.05 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 41.44 + 0.00) = 41.44 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-74 80 0.57 53.34 0.00 -9.45 -1.55 0.00 -0.90 0.00 41.44

Segment Leq : 41.44 dBA

Total Leq All Segments: 41.44 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 49.05

(NIGHT): 41.44
```

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 15:57:40

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec19.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 19

Road data, segment # 1: AppletonSide (day/night) -----

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: AppletonSide (day/night)

Angle1 Angle2 : -88.00 deg 84.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0

Sunface : 1 (Absorptive

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: AppletonSide (day) _____

Source height = 1.50 m

ROAD (0.00 + 62.47 + 0.00) = 62.47 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -88 84 0.66 63.96 0.00 0.00 -1.49 0.00 0.00 0.00 62.47

Segment Leq: 62.47 dBA

Total Leq All Segments: 62.47 dBA

Results segment # 1: AppletonSide (night)

Source height = 1.50 m

ROAD (0.00 + 54.87 + 0.00) = 54.87 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-88 84 0.66 56.36 0.00 0.00 -1.49 0.00 0.00 0.00 54.87

Segment Leq: 54.87 dBA

Total Leq All Segments: 54.87 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 62.47 (NIGHT): 54.87

^

♠

NORMAL REPORT STAMSON 5.0 Date: 02-12-2022 15:59:13 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec19tr.te Time Period: Day/Night 16/8 hours Description: Receptor Point 19tr Road data, segment # 1: AppletonSide (day/night) -----Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: AppletonSide (day/night) Angle1 Angle2 : -88.00 deg 84.00 deg Wood depth 0 (No woods.) No of house rows 0 / 0 (Absorptive ground surface) Surface 1 Receiver source distance : 15.00 / 15.00 m

Receiver height : 1.50 / 1.50 m

: Topography (Flat/gentle slope; with barrier) 2

: -88.00 deg : 2.50 m Barrier angle1 Angle2: 84.00 deg

Barrier height

Barrier receiver distance : 10.00 / 10.00 m

Source elevation : 135.00 m Receiver elevation : 135.00 m Barrier elevation : 135.00 m : 0.00 Reference angle

Results segment # 1: AppletonSide (day)

Source height = 1.50 m

Barrier height for grazing incidence

```
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 ! 1.50 ! 1.50 ! 136.50
ROAD (0.00 + 54.29 + 0.00) = 54.29 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -88 84 0.51 63.96 0.00 0.00 -1.24 0.00 0.00 -8.42 54.29
______
Segment Leq: 54.29 dBA
Total Leq All Segments: 54.29 dBA
Results segment # 1: AppletonSide (night)
_____
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
   1.50 ! 1.50 ! 1.50 !
                             136.50
ROAD (0.00 + 46.70 + 0.00) = 46.70 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -88 84 0.51 56.36 0.00 0.00 -1.24 0.00 0.00 -8.42 46.70
______
Segment Leq: 46.70 dBA
Total Leq All Segments: 46.70 dBA
TOTAL Leg FROM ALL SOURCES (DAY): 54.29
               (NIGHT): 46.70
```

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 16:58:30

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec20.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 20

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -89.00 deg 86.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day) _____

Source height = 1.50 m

ROAD (0.00 + 59.47 + 0.00) = 59.47 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -89 86 0.66 60.95 0.00 0.00 -1.47 0.00 0.00 0.00 59.47

Segment Leq: 59.47 dBA

Total Leq All Segments: 59.47 dBA

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

ROAD (0.00 + 51.86 + 0.00) = 51.86 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-89 86 0.66 53.34 0.00 0.00 -1.47 0.00 0.00 0.00 51.86

Segment Leq : 51.86 dBA

Total Leq All Segments: 51.86 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 59.47 (NIGHT): 51.86

♠

♠

STAMSON 5.0 NORMAL REPORT Date: 02-12-2022 17:01:03

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec21.te Time Period: Day/Night 16/8 hours

Description: Receptor Point 21

Road data, segment # 1: Old Almonte (day/night) _____

Car traffic volume : 3239/282 veh/TimePeriod * Medium truck volume : 258/22 veh/TimePeriod * Heavy truck volume : 184/16 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 4001 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Old Almonte (day/night) _____

Angle1 Angle2 : -89.00 deg 88.00 deg

Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Old Almonte (day)

Source height = 1.50 m

ROAD (0.00 + 59.48 + 0.00) = 59.48 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-89 88 0.66 60.95 0.00 0.00 -1.46 0.00 0.00 0.00 59.48

Segment Leq: 59.48 dBA

```
Total Leq All Segments: 59.48 dBA
```

^

Results segment # 1: Old Almonte (night)

Source height = 1.50 m

Segment Leq: 51.87 dBA

Total Leq All Segments: 51.87 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 59.48 (NIGHT): 51.87

♠

♠

APPENDIX 3

REPORTS BY OTHERS

Mill Valley Estates Transportation Impact Assessment

Prepared for:

Houchaimi Holdings Inc.

Prepared by:

November 2022

PN: 2022-142

Table of Contents

1	Introd	luction	1
	1.1 Exis	ting Conditions	3
	1.1.1	Area Road Network	3
	1.1.2	Existing Intersections	
	1.1.3	Existing Driveways	
	1.1.4	Cycling and Pedestrian Facilities	4
	1.1.5	Existing Transit	5
	1.1.6	Existing Peak Hour Travel Demand	5
2	Future	e Background Conditions	8
	2.1 Plan	ned Conditions	8
	2.1.1	Changes to the Area Transportation Network	8
	2.1.2	Other Study Area Developments	8
	2.1.3	Background Growth	8
	2.1.4	Future Background Traffic Volumes	8
3	Dema	nd Forecasting	10
	3.1 Site	Trip Generation	10
	3.2 Veh	icle Traffic Distribution and Assignment	11
	3.3 Futu	ure Total Travel Demands	12
4	Opera	ational Analysis	13
	4.1 202	2 Existing Operational Analysis	14
	4.2 Futu	ure Background Conditions	15
	4.2.1	Future Background Traffic Control Warrants	15
	4.2.2	2027 Future Background Conditions	15
	4.2.3	2032 Future Background Conditions	16
	4.3 Futu	ure Total Conditions	17
	4.3.1	Future Total Traffic Control Warrants	17
	4.3.2	2027 Future Total Conditions	17
	4.3.3	2032 Future Total Conditions	18
5	Plan c	of Subdivision Review	19
	5.1 Desi	ign for Sustainable Modes	19
	5.2 New	v Streets Network	20
	5.2.1	Access Intersection Design Elements	20
	5.3 Park	king Supply	21
6	Findin	ngs and Recommendations	21
	ist of Fig		
		Context Plan	
_	_	cept Plan	
_	_	s Canada Trail	
_	~	P Existing Traffic Volumes	
Fig	gure 5: Exist	ing Pedestrian Volumes	

Figure 6: Existing Cyclist Volumes	7
Figure 7: 2027 Future Background Traffic Volumes	9
Figure 8: 2032 Future Background Traffic Volumes	10
Figure 9: New Site-Generated Traffic Volumes	11
Figure 10: 2027 Future Total Traffic	12
Figure 11: 2032 Future Total Traffic	13
Figure 12: Recommended Sidewalk Provision	20
Table of Tables	
Table 1: Turning Movement Count Data Dates	5
Table 2: ITE Trip Generation Rate	10
Table 3: Vehicle Site Trip Generation	11
Table 4: Peak Hour Factors	14
Table 5: Level of Service Criteria for Signalized/Unsignalized Intersections	14
Table 6: 2022 Existing Intersections Operational Analysis	
Table 7: 2027 Future Background Conditions Operational Analysis	15
Table 8: 2032 Future Background Conditions Operational Analysis	16
Table 9: 2027 Future Total Conditions Operational Analysis	17
Table 10: 2032 Future Total Conditions Operational Analysis	

List of Appendices

Appendix A – Aerial Images and Photos

Appendix B – Traffic Data and AADT

Appendix C – 2022 Existing Synchro Worksheets

Appendix D – Signal Warrants

Appendix E – 2027 Future Background Synchro and Sidra Worksheets

Appendix F – 2032 Future Background Synchro and Sidra Worksheets

Appendix G – 2027 Future Total Synchro and Sidra Worksheets

Appendix H – 2032 Future Total Synchro and Sidra Worksheets

Appendix I – Turn Lane Warrants

1 Introduction

This Transportation Impact Assessment has been prepared to support the draft plan subdivision for the proposed development of Mill Valley Estates in the Ward of Almonte in the Municipality of Mississippi Mills, Ontario. The subject site is bounded by Paterson Road, County Road 17, the existing Orchard View Retirement and future Mill Valley Living, and rural lands to the south and is currently zoned as Development (D) Zone. The residential subdivision is proposed to include a total of 48 apartment units, 104 detached homes, 158 semi-detached homes, and 185 townhomes.

The proposed development will connect to the intersection of Jack Dalgity Street at Paterson Street via a new local road on the east leg and to Appleton Side Road (County Road 17) via a new local road.

The proposed development is anticipated to have a full build-out and occupancy year of 2027. The analysis will therefore include 2022 existing, 2027 future background, 2032 future background, 2037 future total conditions. The requirements for this TIA have been confirmed with staff from both Lanark County and the Municipality of Mississippi Mills via a pre-consultation meeting held virtually on July 20, 2022.

Figure 1 illustrates the Study Area Context. Figure 2 illustrates the concept plan.

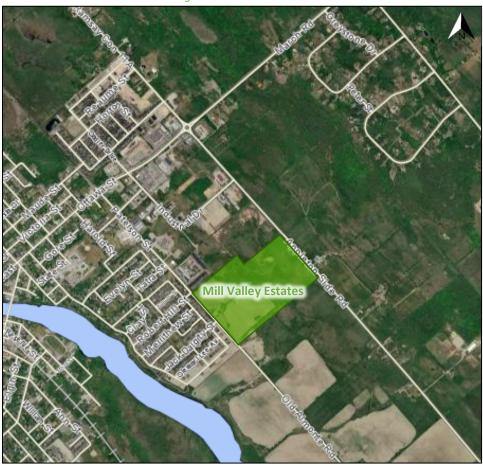


Figure 1: Area Context Plan

Source: http://cgis.com/cpal/Default.aspx?CLIENT=MMILLS&MAPTYPE=Zoning Accessed: November 16, 2022

SITE INFORMATION

*to be rezoned as per planing rationale.	
SITE AREA	
Total Site Area:	33.599ha
Net Site Area:	15.936ha
DENSITY	
Maximum:	25units/ha
Low Density Target:	60%
Medium Density Target:	40%
DEVELOPMENT STATISTICS	
Single Detached (35ft): 34	

72 78

166

Development (D)*

SUMMARY OF UNITS

Houses: 423 Apartments: 48

Total: 471

DENSITIES

Maximum: 25 units/net ha Provided: 29.5 units/net ha

Low Density (singles + semi-detached): 257 units (55%) Medium Density (townhouses + apart.): 214 units (45%)

PARKLAND DEDICATION

Required: 75,629m² x 2% + 260,358m² x 5%:

STREETS' TOTAL LENGTH

Total length (center line): ~3,750m

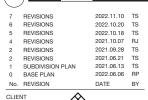
MILL VALLEY

Subdivision Plan

ESTATES

LEGEND

14,350m²


929m²

SINGLE DETACHED (35FT / 10.65M)
SINGLE DETACHED HOUSES (42FT / 12.8M)
SINGLE DETACHED HOUSES (45FT / 13.72M)
SEMI DETACHED HOUSES
TOWNHOUSES
APARTMENT BUILDING
BUSINESS PARK
PARKLAND DEDICATION
 444ENUED / 00 4 0 E

RESIDENTIAL - COMMUNITY FACILITY ZONE (OP) PROPERTY BOUNDARY

SETBACKS

Planning + Design

396 Cooper Street, Suite 300, Ottawa ON K2P 2H7 613.730.5709 www.fotenn.com

DESIGNED	TS
REVIEWED	RP
DATE	2022.06.06

1.1 Existing Conditions

1.1.1 Area Road Network

Ottawa Street: Ottawa Street is a Municipality of Mississippi Mills arterial road with a two-lane urban cross-section west of Menzie Street/Paterson Street and a four-lane urban cross-section east of Menzie Street/Paterson Street. The posted speed limit is 50 km/h within the study area. Sidewalks are present on both sides of the road west of Industrial Drive. Bike lanes are present on both sides of the road west of Menzie Street/Paterson Street and a mixed-use path (MUP) is present on both sides of the road between Industrial Drive and 175 metres to the east where a half-signal permits a MUP crossing, from which point a MUP continues on the north side of the road to the east. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 30.0 metre right of way for arterial roadways.

Mach Road (County Road 49): March Road is a County of Lanark arterial road with a two-lane rural cross-section with gravel shoulders on both sides of the road. About 275 metres east of Appleton Side Road (Country Road 17), the posted speed limit transitions from 50 km/h to 70 km/h. A measured right-of-way taken from the Municipality of Mississippi Mills Mapping Application of 30.0 metres is noted.

Appleton Side Road (Country Road 17): Appleton Side Road (Country Road 17) is a County of Lanark collector road. It has a two-lane rural cross-section with paved shoulders north of Industrial Drive where the posted speed limit is 50 km/h and gravel shoulders to the south where the posted speed limit is 80 km/h. The measured right-of-way taken from the Municipality of Mississippi Mills Mapping Application of 26.5 metres is noted.

Paterson Street: Paterson Street is a Municipality of Mississippi Mills collector road with a two-lane urban cross-section with sidewalks on both sides of the road. The posted speed limit is 40 km/h north of Jack Dalgity Street and 50 km/h to the south. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 24.0 metre right of way for collector roadways.

Industrial Drive: Industrial Drive is a Municipality of Mississippi Mills collector road with a two-lane rural cross-section. Based on the Municipality of Mississippi Mills Transportation Master Plan, a speed limit of 50 km/h is assumed for urban collector roadways. An asphalt sidewalk is present on the west side of the road between Ottawa Street and Stoneridge Plaza south access. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 24.0 metre right of way for collector roadways.

Ramsay Concession 11A: Ramsay Concession 11A is a Municipality of Mississippi Mills local road with a two-lane rural cross-section including paved shoulders within the study area. No posted speed limit is present; however, the Municipality of Mississippi Mills Transportation Master Plan indicates a speed limit of 50 km/h can be assumed for urban local roadways. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 20.0 metre right of way for local roadways.

Menzie Street: Menzie Street is a Municipality of Mississippi Mills collector road with a two-lane urban cross-section with a sidewalk on the west side of the road. Based on the Municipality of Mississippi Mills Transportation Master Plan, a speed limit of 50 km/h is assumed for urban collector roadways. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 24.0 metre right of way for collector roadways.

Jack Dalgity Street: Jack Dalgity Street is a Municipality of Mississippi Mills local road with a two-lane urban cross-section with a sidewalk on the north side of the road. Based on the Municipality of Mississippi Mills Transportation Master Plan, a speed limit of 50 km/h is assumed for urban local roadways. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 20.0 metre right of way for local roadways.

1.1.2 Existing Intersections

The existing key intersections have been summarized below, and aerial images and photos from a site visit are provided for illustrative purposes in Appendix A:

(County Road 17)/Ramsay Concession 11A

Ottawa Street/March Road (County The intersection of Ottawa Street/March Road (County Road 49) and Road 49) at Appleton Side Road Appleton Side Road (County Road 17)/Ramsay Concession 11A is a four-legged roundabout intersection.

> The northbound and southbound approaches each consists of a shared all-movement lane. The eastbound and westbound approaches each consists of a shared left-turn/through lane and a shared through/right-turn lane. Pedestrian crossovers are provided on each leg. No turn restrictions were noted.

Ottawa Street and Paterson Street /Menzie Street

The intersection of Ottawa Street and Paterson Street/Menzie Street is a signalized intersection. The northbound, southbound, and eastbound approaches each consists of a shared all-movement lane. The westbound approach consists of a left-turn lane, a through lane, and an auxiliary right-turn lane. No turning restrictions were noted at this intersection.

Industrial Drive and Appleton Side Road (County Road 17)

The intersection of Industrial Drive and Appleton Side Road (County Road 17) is an unsignalized T-intersection, stop-controlled on the minor approach of Industrial Drive. Each approach consists of a shared all-movement lane. No turning restrictions were noted at this intersection.

Jack Dalgity Street and Paterson Street

The intersection of Jack Dalgity Street and Paterson Street is an unsignalized T-intersection, stop-controlled on the minor approach of Jack Dalgity Street. Each approach consists of a shared all-movement lane. No turning restrictions were noted at this intersection.

1.1.3 Existing Driveways

Within 400 metres of the proposed site accesses, two accesses to a retirement home with surrounding townhomes, two driveways to single detached homes are present on Paterson Street, one driveway to a single detached home is present on Appleton Side Road, and field accesses are present on both Paterson Street and Appleton Side Road. None are anticipated to generate significant traffic volumes.

1.1.4 Cycling and Pedestrian Facilities

Sidewalks are present on the north side of Jack Dalgity Street, on the west side of Industrial Drive between Ottawa Street and Stoneridge Plaza south access and of Menzie Street, and on both sides of Paterson Road. A pedestrian crossing is provided on Appleton Side Road (County Road 17) about 245 metres south of Ottawa Street connecting to the Appleton Trail.

Bike lanes are present on both sides of Ottawa Street west of Menzie Street/Paterson Street, and a mixed-use path is present on both sides of Ottawa Street between Industrial Drive and 175 metres to the east where a halfsignal permits a MUP crossing, and a MUP continues on the north side of the road to the east.

The Trans Canada Trail partly comprises the paved shoulders on Appleton Side Road (County Road 17) and the MUPs on Ottawa Street through the study area. The Lanark Link of the Trail is cited to be popular for cycling, per

its description at tetrail.ca, and is stated to permit walking/hiking and road cycling. Figure 3 shows the trail located within the study area.

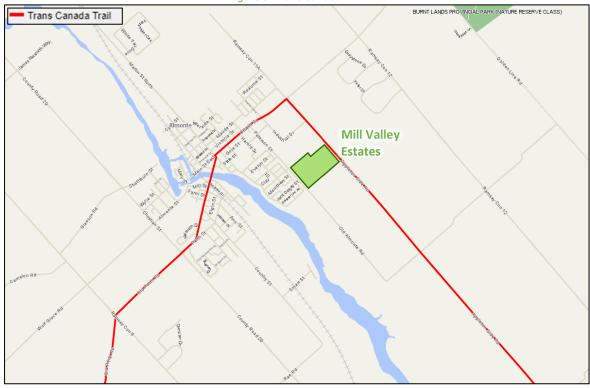


Figure 3: Trans Canada Trail

Source: https://tctrail.ca/explore-the-map/Accessed: November 16, 2022

1.1.5 Existing Transit

There is no existing transit service along the boundary road that would serve the proposed development.

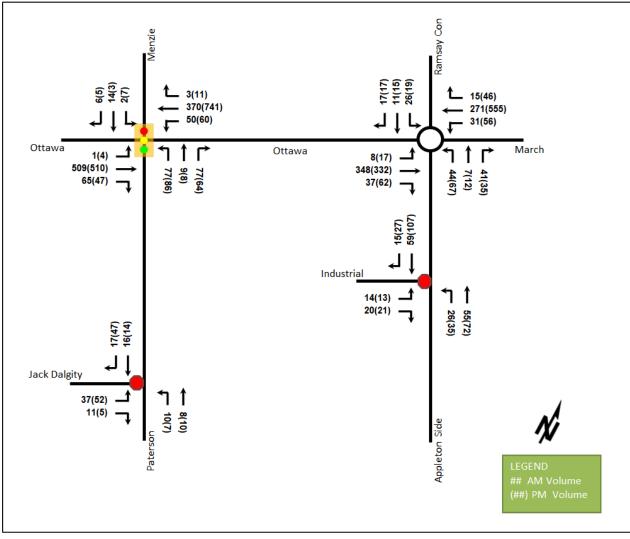
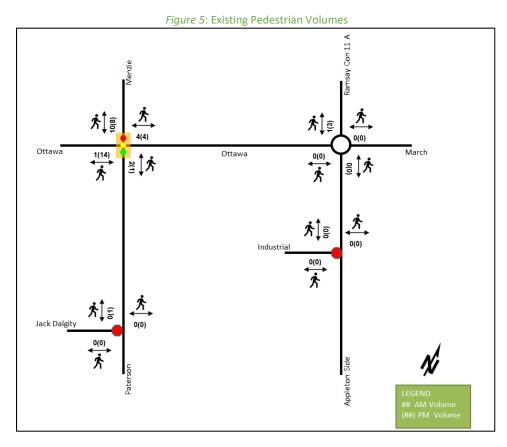
1.1.6 Existing Peak Hour Travel Demand

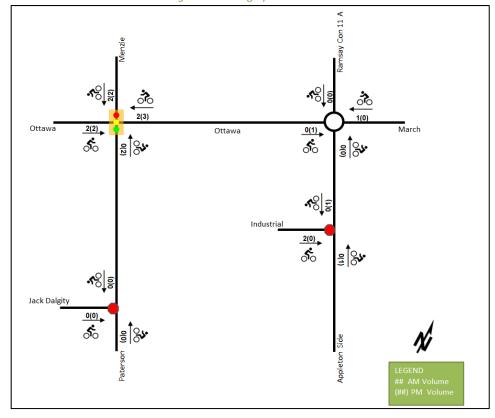
Existing turning movement counts for the weekday AM and PM Peak were provided by The Traffic Specialist. Table 1 summarizes the count locations, count dates, identified peak hour hours, and data sources.

AM Peak Hour Location **Count Date Data Source** (PM Peak Hour) Ottawa St/March Rd (CR 49) at Appleton 8:45 - 9:45Wednesday, November 02, 2022 Side Rd (CR 17)/Ramsay Con 11A (16:00 - 17:00)9:00 - 10:00Ottawa St at Paterson St/Menzie St Wednesday, November 02, 2022 (15:45 - 16:45)The Traffic 8:45 - 9:45Specialist Industrial Dr at Appleton Side Rd (CR 17) Wednesday, November 02, 2022 (16:15 - 17:15)8:30 - 9:30Jack Dalgity St at Paterson Street Wednesday, November 02, 2022 (15:45 - 16:45)

Table 1: Turning Movement Count Data Dates

Figure 4 illustrates the 2022 existing horizon traffic volumes. Detailed turning movement count data and AADT counts can be found in Appendix B. Estimated AADTs from the existing volumes were confirmed to be commensurate with the AADT on the segments from the County Road traffic volume database.


Figure 4: 2022 Existing Traffic Volumes

Pedestrian and cyclist volumes included in study area intersection counts are illustrated in Figure 5 and Figure 6, respectively.

2 Future Background Conditions

2.1 Planned Conditions

2.1.1 Changes to the Area Transportation Network

The Municipality of Mississippi Mills Active Transportation Plan indicates Paterson Street as a future primary cycling urban route, Ottawa Street, March Road (County Road 49), and Appleton Side Road (County Road 17) as future spine routes. While no specific timing information has been indicated for these improvements and they may be assumed to occur beyond the future analysis horizon, no changes in traffic patterns or network capacity are anticipated to be resultant from these improvements.

No other changes to the area transportation network are anticipated.

2.1.2 Other Study Area Developments

At the time of this report, no other development applications were available for the adjacent properties.

2.1.3 Background Growth

To generate 2027 and 2032 future background traffic volumes, a 1.5 % compound annual growth rate was assumed to be applied to the existing 2022 traffic counts. This growth rate has been applied to Appleton Side Road, Ottawa Street, March Road, and Paterson Street's mainline volumes and to the major turning movements at intersections.

2.1.4 Future Background Traffic Volumes

Applying the background growth rate discussed in Section 2.1.3 above to the 2022 existing traffic volumes, the future background traffic volumes were projected.

Figure 7 and Figure 8 illustrate the 2027 and 2032 future background traffic volumes, respectively. All intersection lane configurations have been carried forward from the 2022 existing conditions as there are no anticipated changes for the 2027 and 2032 future horizons.

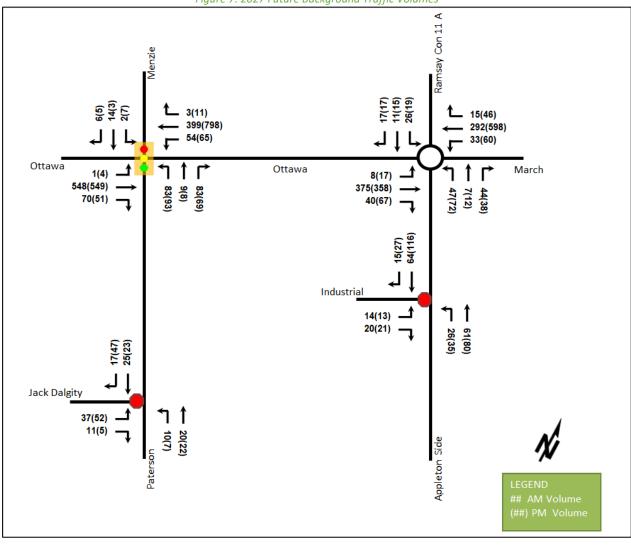


Figure 7: 2027 Future Background Traffic Volumes

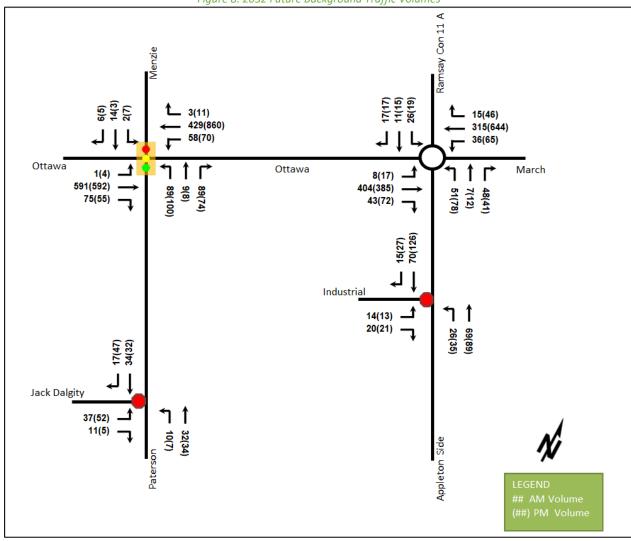


Figure 8: 2032 Future Background Traffic Volumes

3 Demand Forecasting

3.1 Site Trip Generation

The proposed development will include 104 single family detached units, 158 single-family attached units, 185 low-rise multifamily housing units, and 48 mid-rise multifamily housing units. The *ITE Trip Generation Manual* 11th *Edition* has been reviewed to determine the appropriate trip generation rate equations for the proposed land uses and are summarized in Table 2.

Table 2: ITE Trip Generation Rate

Land Use	Data Causa	Trip Rates			
Land Ose	Data Source	AM Peak	PM Peak		
Single Family Detached	LUC 210	T = 0.91(X) + 0.12	T = 0.94(X) + 0.27		
Single Family Attached	LUC 215	T = 0.52(X) - 5.70	T = 0.6(X) - 3.93		
Multifamily Housing (Low-Rise)	LUC 220	T = 0.31 (X) +22.85	T = 0.43(X) + 20.55		
Multifamily Housing (Mid-Rise)	LUC 221	T = 0.44(X) - 11.61	T = 0.39(X) + 0.34		
Notes: T = Average Vehicle Trip Ends. X = Number of Dwelling Units					

Using the above vehicle trip rate equations, the total vehicle trip generation during the weekday AM peak hour and weekday PM peak hour are summarized in Table 3. Given that the proposed development consists of only residential uses and this analysis is for full occupancy of the subject development, all trips are considered primary, and no synergy effects or pass-by trips have been considered.

Table 3: Vehicle Site Trip Generation

Land Use	Units	AM Peak (veh/hr)			PM Peak (veh/hr)		
		In	Out	Total	In	Out	Total
Single Family Detached	104	20	57	77	65	38	103
Single Family Attached	158	24	52	76	52	39	91
Multifamily Housing (Low-Rise)	185	19	61	80	63	37	100
Multifamily Housing (Mid-Rise)	48	2	8	10	12	7	19
	Total	65	178	243	192	121	313

As shown above, a total of 243 AM and 313 PM new peak hour two-way vehicle trips are projected as a result of proposed development.

3.2 Vehicle Traffic Distribution and Assignment

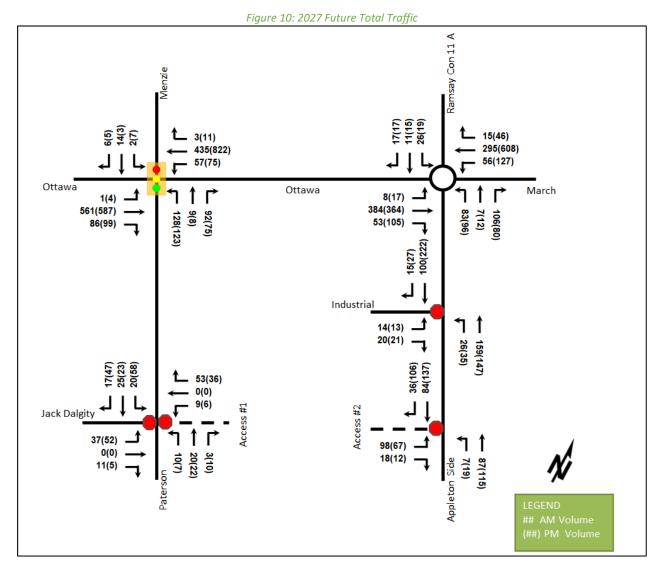

Traffic distribution was based on the existing volume splits at Study Area intersections and a knowledge of the area travel. Based on these factors, new site-generated trips were assigned to Study Area intersections, which is illustrated in Figure 9. Section 5.2 provides further information regarding proposed access configurations.

Figure 9: New Site-Generated Traffic Volumes 000 000 0(0) 0(0) 3(10) 36(24) 23(67) Ottawa Ottawa March 0(0) 0(0) 9(6) 13(38) 8 13(38) 16(48) 0(0) 36(106) Industrial 0(0) 53(36) 0(0) Jack Dalgity 98(67)

CIGIH TRANSPORTATION

3.3 Future Total Travel Demands

The 2027 and 2032 site-generated traffic has been combined with the 2027 and 2032 future background traffic volumes to estimate the 2027 and 2032 future total traffic volumes. Figure 10 and Figure 11 illustrate the 2027 and 2032 future total traffic volumes, respectively. Access configuration details are presented in Section 5.2.

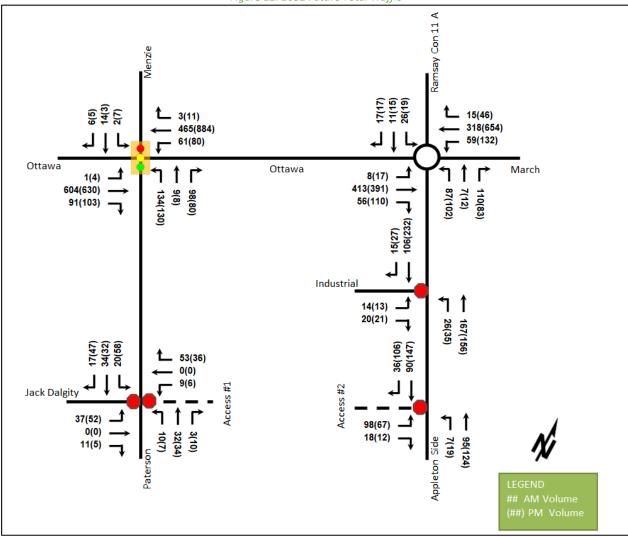


Figure 11: 2032 Future Total Traffic

4 Operational Analysis

To understand the operational characteristics of the Study Area intersections, a Synchro model has been created using Synchro Version 11 and Sidra Version 9 has been used to model the study area roundabouts.

Since the signal timing plan of the intersection of Ottawa Street and Paterson Street/Menzie Street is not available at this time, a cycle length of 90 seconds has been assumed for both AM and PM peak hours at all horizons and optimized splits have been applied.

Heavy Vehicle percentages (HV%) have been calculated for each movement based on the existing turning movement counts for the Study Area intersections and have been applied to both the existing and future analysis horizons. A minimum HV% of 2% was used in Synchro to ensure a conservative analysis.

Cyclist and pedestrian volumes were provided for all intersections with turning movement count information collected in 2022 and have been applied to the existing and future conditions analysis.

Peak Hour Factors (PHF) have been entered for each intersection based on the turning movement counts provided. The Peak Hour Factors used for each intersection are shown below in Table 4. The peak hour factor for the site access on Appleton Side Road will be taken from the adjacent intersection at Industrial Drive.

Table 4: Peak Hour Factors

Intersection	Peak Ho	ur Factor
intersection	AM	PM
Ottawa St/March Rd (CR 49) at Appleton Side Rd (CR 17)/Ramsay Con 11A	0.91	0.97
Ottawa St at Paterson St/Menzie St	0.93	0.95
Industrial Dr at Appleton Side Rd (CR 17)	0.86	0.96
Jack Dalgity St at Paterson St	0.71	0.94

All other parameters have been coded using accepted best practices and default parameters, where applicable.

LOS has been determined using the HCM definitions for LOS at signalized and unsignalized intersections which are summarized in Table 5 below.

Table 5: Level of Service Criteria for Signalized/Unsignalized Intersections

LOS	Signalized Intersection Delay (s)	Unsignalized Intersection Delay (s)
Α	≤10	≤10
В	>10 and ≤20	>10 and ≤15
С	>20 and ≤35	>15 and ≤25
D	>35 and ≤55	>25 and ≤35
E	>55 and ≤80	>35 and ≤50
F	>80	>50

Critical movements and critical intersections have been defined as individual movements with LOS F or a V/C ratio of 1.00 or greater, and intersections with an overall LOS F. Critical movements and critical intersections will be indicated in red within operational result tables below and may require mitigation measures.

4.1 2022 Existing Operational Analysis

Table 6 summarizes the operational analysis for the 2022 existing conditions during both the AM and PM peak hours. If present, critical movements, as defined above, have been identified in red. Synchro worksheets for the 2022 existing traffic conditions are included in Appendix C.

Table 6: 2022 Existing Intersections Operational Analysis

Interception	Lama		AM Pea	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.14	2.4	5.3	Α	0.14	2.6	5.3
Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A Roundabout	WB	Α	0.11	2.8	4.4	Α	0.22	2.9	9.6
	NB	Α	0.10	6.1	2.7	Α	0.12	6.6	3.2
	SB	Α	0.06	5.9	1.5	Α	0.06	6.2	1.6
	Overall	Α	0.14	3.2	5.3	Α	0.22	3.3	9.6
	EB	В	0.55	10.5	98.1	С	0.71	25.0	122.4
044	WBL	Α	0.11	7.1	9.3	Α	0.17	9.1	9.4
Ottawa St and	WBT	Α	0.36	8.0	53.8	С	0.77	20.6	144.2
Paterson	WBR	Α	0.00	0.0	0.0	Α	0.01	0.5	0.5
St/Menzie St Signalized	NB	С	0.64	32.4	35.8	С	0.42	24.2	35.8
	SB	С	0.08	21.0	7.6	В	0.04	19.6	5.8
	Overall	В	0.56	12.8	-	С	0.70	22.0	-

lutava ati av	Laura		AM Pe	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
Industrial Dr and	EB	Α	0.05	9.4	0.8	Α	0.04	9.6	0.8	
Appleton Side Rd (CR 17)	NB	Α	0.02	7.5	0.8	Α	0.03	7.6	0.8	
	SB	-	-	-	-	-	-	-	-	
Unsignalized	Overall	Α	0.05	9.4	0.8	Α	-	2.2	-	
In all Dalathy Change	EB	Α	0.07	9.2	1.5	Α	0.07	9.2	1.5	
Jack Dalgity St and Paterson St Unsignalized	NB	Α	0.01	7.6	0.0	Α	0.01	7.4	0.0	
	SB	-	-	-	-	-	-	-	-	
	Overall	Α	-	5.2	-	Α	-	4.3	-	

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

Generally, the Study Area intersections are shown to operate with good overall LOS and low delays and no additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted.

4.2 Future Background Conditions

4.2.1 Future Background Traffic Control Warrants

Using Ontario Traffic Manual (OTM) Book 12 Justification 7 methodology for examining traffic control signal warrants, the unsignalized Study Area intersections have been analyzed. In the future background horizons signalization is not warranted at any currently unsignalized Study Area intersections. Traffic control warrant sheets have been included in Appendix D.

4.2.2 2027 Future Background Conditions

The 2027 future background intersection volumes have been analyzed to allow for a comparison of the future volumes with and without the proposed development.

Table 7 summarizes the operational analysis for the 2027 future background conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.2.1. Synchro and Sidra worksheets for the 2027 future background traffic conditions are included in Appendix E.

Table 7: 2027 Future Background Conditions Operational Analysis

Intersection	Lana		AM Pea	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.15	2.4	5.8	Α	0.15	2.7	5.7
Rd (CR 49) and	WB	Α	0.12	2.8	4.7	Α	0.24	2.9	10.5
Appleton Side Rd	NB	Α	0.10	6.2	3.0	Α	0.13	6.7	3.5
(CR 17)/Ramsay Con 11A Roundabout	SB	Α	0.06	6.0	1.5	Α	0.06	6.3	1.7
	Overall	Α	0.15	3.2	5.8	Α	0.24	3.3	10.5
	EB	В	0.60	11.6	111.3	С	0.77	27.8	#150.6
Ottowa Ct and	WBL	Α	0.13	7.4	10.0	Α	0.19	9.4	10.1
Ottawa St and	WBT	Α	0.39	8.5	59.1	С	0.83	24.2	#174.7
Paterson St/Menzie St Signalized	WBR	Α	0.00	0.0	0.0	Α	0.01	0.5	0.5
	NB	С	0.67	33.9	38.4	С	0.45	25.2	38.7
	SB	С	0.08	20.9	7.6	В	0.04	19.6	5.8
	Overall	В	0.60	13.6	-	С	0.75	24.8	-

lusta una anti a un	Laura		AM Pea	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
Industrial Dr and	EB	Α	0.05	9.4	0.8	Α	0.04	9.7	0.8	
Appleton Side Rd (CR 17)	NB	Α	0.02	7.5	0.8	Α	0.03	7.6	0.8	
	SB	-	-	-	-	-	-	-	-	
Unsignalized	Overall	Α	-	2.6	-	Α	-	2.0	-	
lack Dalaity Stand	EB	Α	0.08	9.4	1.5	Α	0.07	9.3	1.5	
Jack Dalgity St and Paterson St Unsignalized	NB	Α	0.01	7.6	0.0	Α	0.01	7.4	0.0	
	SB	-	-	-	-	-	-	-	-	
	Overall	Α	-	4.4	-	Α	-	3.7	-	

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2027 future background horizon in the study area generally operate similarly to the existing conditions. No additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse)

are noted.

The intersection of Ottawa Street at Paterson Street/Menzie Street may exhibit extended queues on the eastbound and westbound through movement during the PM peak hour due to background growth.

4.2.3 2032 Future Background Conditions

The 2032 future background intersection volumes have been analyzed to allow for a comparison of the future volumes with and without the proposed development.

Table 8 summarizes the operational analysis for the 2032 future background conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.2.1. Synchro and Sidra worksheets for the 2032 future background traffic conditions are included in Appendix F.

Table 8: 2032 Future Background Conditions Operational Analysis

Intorcostion	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March Rd (CR 49) and	EB	Α	0.16	2.5	6.3	Α	0.16	2.7	6.3
	WB	Α	0.13	2.8	5.2	Α	0.26	3.0	11.6
Appleton Side Rd	NB	Α	0.12	6.3	3.3	Α	0.14	6.8	3.9
(CR 17)/Ramsay Con 11A Roundabout	SB	Α	0.06	6.1	1.6	Α	0.06	6.4	1.7
	Overall	Α	0.16	3.2	6.3	Α	0.26	3.4	11.6
	EB	В	0.65	13.1	127.2	С	0.83	31.6	#170.4
O44 C4 I	WBL	Α	0.14	7.9	10.8	Α	0.22	9.7	10.7
Ottawa St and	WBT	Α	0.42	9.1	64.8	С	0.90	29.8	#214.4
Paterson St/Menzie St Signalized	WBR	Α	0.00	0.0	0.0	Α	0.01	0.5	0.5
	NB	D	0.70	35.8	42.0	С	0.48	26.2	41.9
	SB	С	0.07	20.7	7.6	В	0.04	19.6	5.8
	Overall	В	0.65	14.9	-	С	0.81	29.0	-

l	1		AM Peak Hour				PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)		
Industrial Dr and	EB	Α	0.05	9.5	0.8	Α	0.05	9.8	0.8		
Appleton Side Rd (CR 17)	NB	Α	0.02	7.5	0.8	Α	0.03	7.6	0.8		
	SB	-	-	-	-	-	-	-	-		
Unsignalized	Overall	Α	-	2.4	-	Α	-	1.9	-		
look Doloity Ct and	EB	Α	0.08	9.5	2.3	Α	0.07	9.4	1.5		
Jack Dalgity St and	NB	Α	0.01	7.7	0.0	Α	0.01	7.4	0.0		
Paterson St Unsignalized	SB	-	-	-	-	-	-	-	-		
	Overall	Α	-	3.8	-	Α	-	3.3	-		

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2032 future background horizon in the study area generally operate similarly to the existing and 2027 future background conditions. No additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted.

4.3 Future Total Conditions

4.3.1 Future Total Traffic Control Warrants

Using Ontario Traffic Manual (OTM) Book 12 Justification 7 methodology for examining traffic control signal warrants the unsignalized Study Area intersections, as well as the intersection of Site Access #2 and Appleton Side Road (County Road 17) and have been analyzed. In the future total horizon signalization is not warranted at any of the currently unsignalized or future Study Area intersections. Traffic control warrant sheets have been included in Appendix D.

4.3.2 2027 Future Total Conditions

The proposed development's trip generation has been added to the 2027 future background traffic volumes to project the impact of the new traffic on the future road network.

Table 9 summarizes the operational analysis for the 2027 future total conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.3.1. Synchro and Sidra worksheets for the 2027 future total traffic conditions are included in Appendix G.

Table 9: 2027 Future Total Conditions Operational Analysis

Intersection	Lane		AM Pea	ak Hour		PM Peak Hour				
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
Ottawa St/March	EB	Α	0.15	2.4	6.1	Α	0.17	2.9	7.1	
Rd (CR 49) and	WB	Α	0.13	2.7	5.4	Α	0.27	3.5	12.5	
Appleton Side Rd	NB	Α	0.22	6.2	6.4	Α	0.20	6.4	5.9	
(CR 17)/Ramsay Con 11A Roundabout	SB	Α	0.06	6.1	1.6	Α	0.07	6.5	1.8	
	Overall	Α	0.22	3.4	6.4	Α	0.27	3.8	12.5	
	EB	В	0.66	14.9	123.9	С	0.79	26.0	#187.2	
044	WBL	Α	0.15	9.1	10.9	Α	0.20	7.9	11.3	
Ottawa St and	WBT	В	0.45	10.7	68.2	В	0.77	17.9	#199.1	
Paterson St/Menzie St Signalized	WBR	Α	0.00	0.0	0.0	Α	0.01	0.5	0.5	
	NB	D	0.79	44.3	56.7	D	0.74	41.6	49.4	
	SB	В	0.06	19.8	7.6	С	0.05	20.6	5.8	
	Overall	В	0.69	18.2	-	С	0.82	23.2	-	

l	Laura		AM Pea	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
Industrial Dr and	EB	В	0.05	10.1	1.5	В	0.05	10.7	1.5	
Appleton Side Rd	NB	Α	0.02	7.6	0.8	Α	0.03	7.8	0.8	
(CR 17) Unsignalized	SB	-	-	-	-	-	-	-	-	
	Overall	Α	-	1.6	-	Α	-	1.4	-	
look Doloity Ct/	EB	В	0.09	10.2	2.3	В	0.09	10.9	2.3	
Jack Dalgity St/ Access #1 and	WB	Α	0.07	8.9	1.5	Α	0.05	8.9	0.8	
Paterson St	NB	Α	0.01	7.6	0.0	Α	0.01	7.4	0.0	
Unsignalized	SB	Α	0.01	7.3	0.0	Α	0.04	7.4	0.8	
Onsignanzea	Overall	Α	-	5.9	-	Α	-	5.6	-	
Access #2 and	EB	В	0.16	10.4	4.5	В	0.13	11.4	3.8	
Appleton Side Rd (CR 17) Unsignalized	NB	Α	0.01	7.5	0.0	Α	0.02	7.8	0.0	
	SB	-	-	-	-	-	-	-	-	
	Overall	Α	-	3.8	-	Α	-	2.3	-	

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2027 future total horizon in the study area generally operate similarly to the 2027 future background conditions and the site access intersections operate well. Since no additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted, no mitigation is required.

4.3.3 2032 Future Total Conditions

The proposed development's trip generation has been added to the 2032 future background traffic volumes to project the impact of the new traffic on the future road network.

Table 10 summarizes the operational analysis for the 2032 future total conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.3.1. Synchro and Sidra worksheets for the 2032 future total traffic conditions are included in Appendix H.

Table 10: 2032 Future Total Conditions Operational Analysis

Intersection	Lana		AM Pea	ak Hour		,	PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.17	2.6	6.7	Α	0.19	3.0	7.7
Rd (CR 49) and	WB	Α	0.14	3.3	6.0	Α	0.29	3.5	13.7
Appleton Side Rd	NB	Α	0.23	6.3	7.0	Α	0.21	6.6	6.4
(CR 17)/Ramsay Con 11A	SB	Α	0.06	6.3	1.7	Α	0.07	6.7	1.8
Con 11A Roundabout	Overall	Α	0.23	3.7	7.0	Α	0.29	3.8	13.7
	EB	В	0.72	17.1	142.7	С	0.85	30.7	#207.2
Ottowa Ct and	WBL	Α	0.18	9.8	12.0	Α	0.23	8.4	11.8
Ottawa St and	WBT	В	0.48	11.5	74.6	С	0.83	21.8	#224.2
Paterson St/Menzie St Signalized	WBR	Α	0.00	0.0	0.0	Α	0.01	0.5	0.5
	NB	D	0.81	45.8	59.8	D	0.77	43.3	52.7
	SB	В	0.06	19.7	7.6	С	0.05	20.5	5.8
	Overall	В	0.74	19.7	-	С	0.89	26.9	-

Intovocation	Long		AM Pea	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Industrial Dr and	EB	В	0.05	10.2	1.5	В	0.05	10.8	1.5
Appleton Side Rd	NB	Α	0.02	7.6	0.8	Α	0.03	7.9	0.8
(CR 17) Unsignalized	SB	-	-	-	-	-	-	-	-
	Overall	Α	-	1.6	-	Α	-	1.3	-
lack Dalaity Ct/	EB	В	0.09	10.4	2.3	В	0.09	11.1	2.3
Jack Dalgity St/ Access #1 and	WB	Α	0.07	9.0	1.5	Α	0.05	8.9	0.8
Paterson St	NB	Α	0.01	7.7	0.0	Α	0.01	7.4	0.0
Unsignalized	SB	Α	0.01	7.3	0.0	Α	0.04	7.4	0.8
Olisighunzeu	Overall	Α	-	5.4	-	Α	-	5.2	-
Access #2 and	EB	В	0.16	10.6	4.5	В	0.14	11.6	3.8
Appleton Side Rd (CR 17) Unsignalized	NB	Α	0.01	7.5	0.0	Α	0.02	7.8	0.0
	SB	-	-	-	-	-	-	-	-
	Overall	Α	-	3.7	-	Α	-	2.2	-

Notes: Saturation flow rate of 1800 veh/h/lane
Oueue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2032 future total horizon in the study area generally operate similarly to the 2032 future background conditions and the site access intersections operate well. Since no additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted, no mitigation is required.

5 Plan of Subdivision Review

This section provides an overview of community access, street network, parking, and active mode facilities. The proposed Subdivision Concept Plan was previously illustrated in Figure 2.

5.1 Design for Sustainable Modes

The proposed development is a residential subdivision where each detached and townhouse dwelling will include a driveway and garage. Bicycle parking is assumed to be within the individual units.

Pedestrian facilities are recommended to be provided within the proposed development between the site accesses, along potential routes of high pedestrian travel demand, and fronting the major recreational draws of the parkland and stormwater management facility. The preliminary recommended sidewalk layout is illustrated in Figure 12.

Figure 12: Recommended Sidewalk Provision

5.2 New Streets Network

The new streets proposed as part of the plan of subdivision including 20.0-metre local roads, consistent with the Municipality's Transportation Master Plan. The local roads are proposed to be posted as 50 km/h at the gateways to the communities, and the internal roads are proposed as having unposted speed limits of 50 km/h.

Within the subdivision, no turn lanes are proposed for the internal intersections and will be controlled by minor stop control.

5.2.1 Access Intersection Design Elements

The proposed development will connect to the intersection of Jack Dalgity Street at Paterson Street via a new local road east leg and to Appleton Side Road (County Road 17) via a new local road intersection.

Turn lane warrants from the Transportation Association of Canada's Geometric Design Guides for Canadian Roads Section 9.17 were examined for Paterson Street and Appleton Side Road to the new community local roads. Neither access intersection was found to warrant a new left-turn lane on the existing road. The results of the turn lane warrants are provided in Appendix I.

No turn lanes are proposed for the new leg of the intersection of Jack Dalgity Street at Paterson Street or the new local road intersecting with Appleton Side Road. The operations are summarized in Section 4.3 for future conditions. No capacity issues were noted at the intersections of Jack Dalgity Street/Access #1 at Paterson Street and Access #2 at Appleton Side Road (County Road 17) with these assumptions.

As discussed above, a signal warrant analysis has been conducted for the 2032 future total horizon using the OTM Book 12 Justification 7 criteria. Using these criteria, a signal was not found to be warranted at the site access intersections. Appendix D includes the signal warrants for the access.

5.3 Parking Supply

The required parking is subject to Municipality of Mississippi Mills Zoning By-Law #11-83, 2020, which states for the low-rise apartment units, the minimum resident parking requirement is 1.2 spaces per unit, which equates to 58 spaces, and 0.2 visitor spaces per unit which equates to ten spaces. The inclusion of a garage and driveway of each detached and townhouse unit satisfies the parking for the freehold dwellings. The community is proposed to include 96 parking spaces for the low-rise apartment units, satisfying the combined minimum parking of 68 spaces.

6 Findings and Recommendations

- a) The Mill Valley Estates development includes 48 apartment units, 104 detached homes, 158 semidetached homes, and 185 townhomes.
- b) The proposed development will connect to the intersection of Jack Dalgity Street at Paterson Street via a new local road on the east leg and to Appleton Side Road (County Road 17) via a new local road.
- c) The full build-out horizon year of 2027 and the full build-out plus five years horizon year of 2032 have been analyzed.
- d) No significant planned changes to the area transportation network and no surrounding background developments have been noted.
- e) The proposed development is projected to a total of 243 AM and 313 PM new peak hour two-way vehicle trips during weekdays.
- f) A 1.5% compound annual growth rate was selected to generate the 2027 and 2032 future background traffic volumes.
- g) As no high v/c ratios or high delays were noted in the 2022 existing condition, no mitigation measures are recommended.
- h) The 2027 and 2032 future background traffic volumes, including the background growth was analyzed. It was found that turning movements operate with reasonable LOS and delay and in a similar manner as existing conditions.
- i) With the addition of site traffic volumes to the Study Area intersections, the V/C and delays at intersections within study area will be slightly increased. These changes do not create any failing movements.
- j) Signal warrants are not met at the site access intersections.
- k) The site access intersections operate well in both the 2027 and 2032 horizons with stop control on the minor approach.
- I) Neither access intersection was found to warrant a new left-turn lane on the existing road.
- m) Pedestrian facilities are recommended to be provided within the proposed development between the site accesses, along potential routes of high pedestrian travel demand, and fronting the major recreational draws of the parkland and stormwater management facility.
- n) Within the subdivision, no turn lanes are proposed for the internal intersections and will be controlled by minor stop control.
- The community is proposed to include 96 parking spaces for the low-rise apartment units, satisfying the combined minimum parking of 68 spaces, which is outlined in the Municipality of Mississippi Mills Zoning By-Law #11-83, 2020.

The Mill Valley Estates development will have a minor impact on the Study Area road network. The proposed access will operate with reasonable LOS and delay on the turning movements into and out of the site. Additionally,

through the provision of on-site facilities, this development will be supportive of active mode transportation. It is recommended that, from a transportation perspective, the proposed development application proceed.

Prepared By:

Reviewed By:

Yu-Chu Chen, EIT Transportation Engineering-Intern Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

Aerial Images and Photos

Appendix B

Traffic Data and AADT

1700-1800

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

1033

Summary: All Vehicles

Almonte, ON Appleton Side Road/Ramsay Concession 11A & March Road/Ottawa Street Survey Date: Tuesday, November 01, 2022 Start Time: 0700 AADT Factor: 1.0 Weather AM: Overcast 10° C Survey Duration: 8 Hrs. Survey Hours: 0700-1000, 1130-1330 & 1500-1800 Weather PM: Mostly Sunny 16° C T. Carmody Surveyor(s): Ottawa St. March Rd. Appleton Side Rd. Ramsay Conc. 11A Eastbound Westbound Southbound ST RT UT ST RT 397 0900-1000 9 333 381 271 307 82 1130-1230 8 270 44 322 242 276 1230-1330 14 233 1500-1600 1600-1700 1233 62 555 46 657 1068 165

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

139

525 850

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr			ehicle v 4073			ted by r 8386		8-hour t 421	by the 8 1190			tor of 1 0	.39 587	1776	10162
AADT 12-hr	108	age daily 474	our vel 4073			alculate 8386		ng the e 421	lent 12-l 1190			DT fact	or of: 1 587	.0 1776	10162
AADT 24 Hr		ADT. The	lumes 5335	culated 4860		/erage d 10985		ehicle vo	s by the 1559		nsion f	actor o	f 1.31 768	2327	13313

AADT and	l expansion	factors	provided	by t	he City	of	Ottawa
----------	-------------	---------	----------	------	---------	----	--------

AM Peak Ho	ur Fa	ctor •	>	0.	91									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen ()700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
0845-0945	5	348	37	3	393	30	271	15	1	317	710	44	7	41	0	92	26	11	17	0	54	146	856
OFF Peak H	our F	actor	→	0.	98									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	1130h &	: 1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1200-1300	11	262	44	2	319	22	273	10	0	305	624	61	16	28	0	105	19	16	17	0	52	157	78
PM Peak Ho	ur Fa	ctor •	>	0.	97									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	1500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1600-1700	11	332	62	6	411	56	555	46	0	657	1068	67	12	35	0	114	19	15	17	0	51	165	1233

Comments:

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

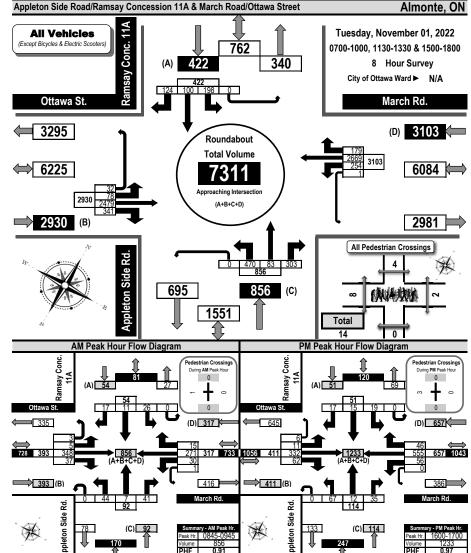
Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

325

441 45

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.


Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

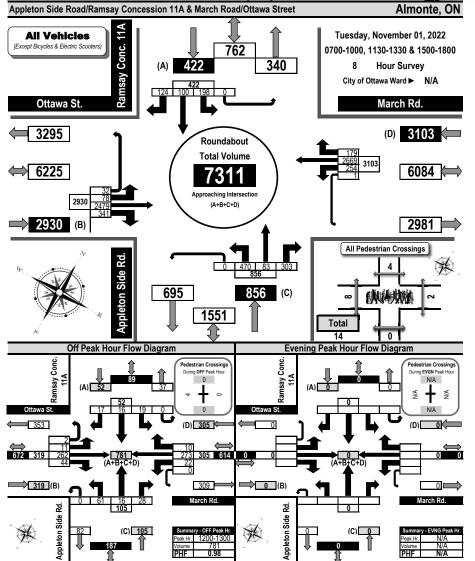
Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Printed on: 11/5/2022

Prepared by: thetrafficspecialist@gmail.com

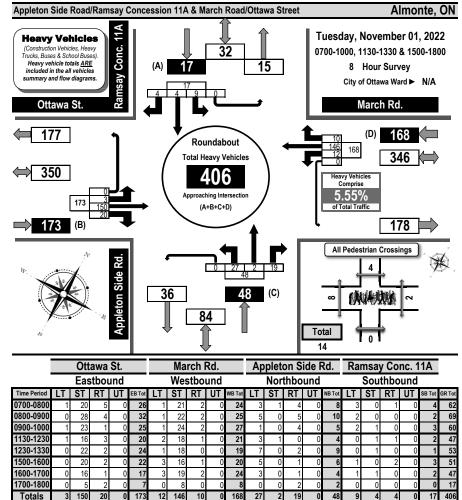
Flow Diagrams: AM PM Peak



Printed on: 11/5/2022

Turning Movement Count Summary, OFF and EVENING Peak Hour Flow Diagrams

All Vehicles Except Bicycles

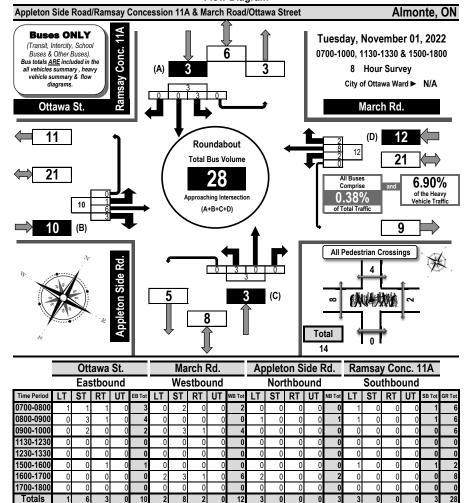


Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

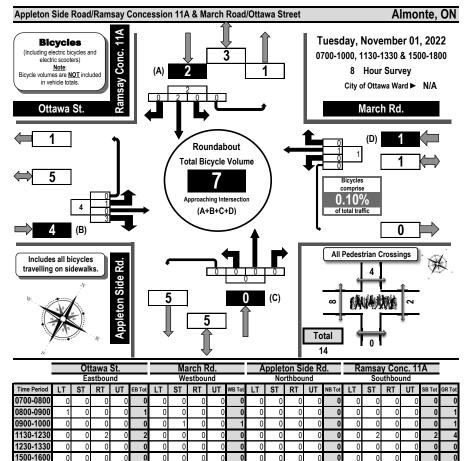
Comments:

Flow Diagrams: OFF Peak


School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram


Comments:

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

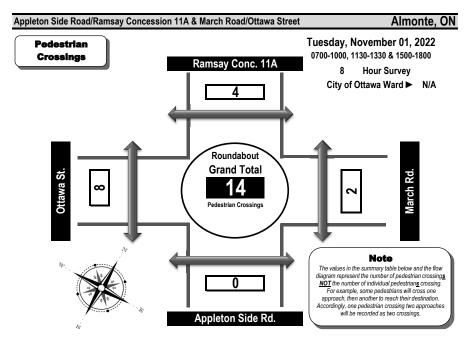
Turning Movement Count Bicycle Summary Flow Diagram

Totals Comments

Printed on: 11/5/2022

1600-1700

1700-1800


School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

0

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Ottawa St.	March Rd.	Total	Appleton Side Rd.	Ramsay Conc. 11A	Total	Total
0700-0800	0	0	0	0	0	0	0
0800-0900	0	0	0	0	2	2	2
0900-1000	1	0	1	0	0	0	1
1130-1230	4	0	4	0	0	0	4
1230-1330	0	0	0	0	0	0	0
1500-1600	0	2	2	0	2	2	4
1600-1700	3	0	3	0	0	0	3
1700-1800	0	0	0	0	0	0	0
Totals	8	2	10	0	4	4	14

Comments:

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Summary: All Vehicles

Ottawa Street & Menzie Road/Paterson Street

AII	IIOI	πe,	UI	١

Survey Date:	Tuesday, November	01, 2022		Start Time:	0700	AADT Factor:	1.0
Weather AM:	Overcast 10° C	Survey Duration:	8 Hrs.	Survey Hours:	0700-1000,	1130-1330 & 1500-1800	

Weather PM: Mostly Sunny 16° C Surveyor(s): T. Carmody

TTCULITCI I		moon	Cuili	119 10							_	Ouiv	Cyon	<i>აე</i> .		1. Ou	iiiiou	y					
		Ott	awa	St.			Ott	awa	St.				Pate	erso	n St			Mer	ızie	Rd.			
		Ea	stbou	ınd	'		We	stboı	ınd				No	rthbou	ınd			Sou	ıthbo	und			
Time	LT	ST	RT	ш	E/B	LT	ST	RT	UT	W/B	Street	LT	ST	RT	UT	N/B	LT	ST	рT	UT	S/B	Street	Grand
Period	-	5		5	Tot		01	1/1	5	Tot	Total	_	01	1/1	5	Tot		01	17.1	5	Tot	Total	Total
0700-0800	0	487	35	0	522	30	238	1	0	269	791	30	4	58	0	92	8	7	2	0	17	109	900
0800-0900	3	459	63	0	525	60	293	2	0	355	880	26	4	62	0	92	4	12	7	0	23	115	995
0900-1000	1	509	65	0	575	50	370	3	0	423	998	77	9	77	0	163	2	14	6	0	22	185	1183
1130-1230	5	471	26	0	502	40	444	5	0	489	991	45	3	52	0	100	4	2	6	0	12	112	1103
1230-1330	5	431	29	0	465	40	430	8	0	478	943	45	1	33	0	79	3	4	12	0	19	98	1041
1500-1600	8	485	68	0	561	62	606	7	0	675	1236	79	18	44	0	141	9	6	6	0	21	162	1398
1600-1700	4	496	46	0	546	65	744	7	0	816	1362	76	8	57	0	141	7	4	6	0	17	158	1520
1700-1800	2	431	25	0	458	64	634	3	0	701	1159	59	6	30	0	95	3	6	2	0	11	106	1265
Totals	28	3769	357	0	4154	411	3759	36	0	4206	8360	437	53	413	0	903	40	55	47	0	142	1045	9405

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr		Equival 5239			s. These 5225		ated by r 11620			by the 8 1255		on fact 65	or of 1 0	.39 197	1453	13073
AADT 12-hr	39	Ave 5239	•		olumes. 5225					lent 12-h 1255		the AAI	OT fact	or of: 1	.0 1453	13073
AADT 24 Hr		Hour A 6863								s by the	24 expa		actor o	f 1.31 259	1903	17126

AADT and expansion factors provided by the City of Ottawa

							-				_		-			_							
AM Peak Ho	our Fa	ctor •	•	0.	93									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 0	700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0900-1000	1	509	65	0	575	50	370	3	0	423	998	77	9	77	0	163	2	14	6	0	22	185	1183
OFF Peak H	lour F	actor	→	0.	97									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	3	476	28	0	507	45	439	5	0	489	996	47	3	51	0	101	1	1	9	0	11	112	1108
PM Peak Ho	our Fa	ctor •	>	0.	95									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1545-1645	4	510	47	0	561	60	741	11	0	812	1373	86	8	64	0	158	7	3	5	0	15	173	1546

Comments

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Notes:

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.


Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

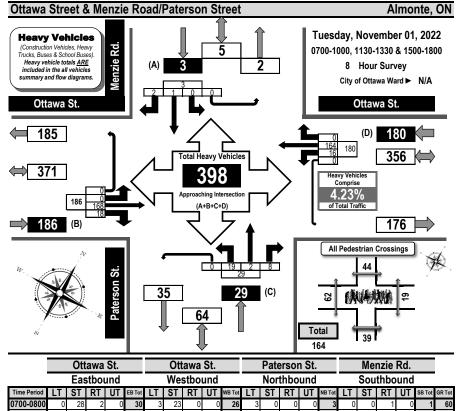
Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Turning Movement Count Summary, OFF and EVENING Peak Hour Flow Diagrams

All Vehicles Except Bicycles Ottawa Street & Menzie Road/Paterson Street Almonte, ON Tuesday, November 01, 2022 **All Vehicles** (Except Bicycles & Electric Scooters) 259 0700-1000, 1130-1330 & 1500-1800 142 117 Hour Survey City of Ottawa Ward ► N/A Ottawa St. Ottawa St. 4243 (D) 4206 Total Volume ⇔ 8397 8428 9405 **⇒ 4154** (B) 4222 **All Pedestrian Crossings** 823 903 (c) 例本规则 62 1726 Total Off Peak Hour Flow Diagram **Evening Peak Hour Flow Diagram** Pedestrian Crossing Pedestrian Crossings 쫎 Menzie Rd. During **OFF** Peak Hou During EVGN Peak Ho **495** (D) 489 年 (D) 0 (

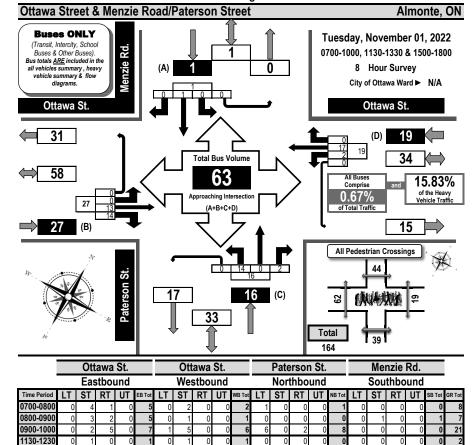
Printed on: 11/5/2022


Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: OFF Peak

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

		Ott	awa	St.			Ott	awa	St.			Pate	ersor	ı St.			Me	nzie	Rd.		
		Eas	tbou	ınd			Wes	stbo	und			Nor	thbo	und			Sou	thbo	und		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0	28	2	0	30	3	23	0	0	26	3	0	0	0	3	0	0	1	0	1	60
0800-0900	0	30	2	0	32	5	20	0	0	25	2	0	1	0	3	0	1	0	0	1	61
0900-1000	0	24	6	0	30	2	27	0	0	29	6	0	3	0	9	0	0	0	0	0	68
1130-1230	0	16	0	0	16	2	21	0	0	23	1	0	2	0	3	0	0	0	0	0	42
1230-1330	0	25	0	0	25	1	22	0	0	23	0	0	1	0	1	0	0	0	0	0	49
1500-1600	0	24	8	0	32	2	22	0	0	24	7	2	0	0	9	0	0	0	0	0	65
1600-1700	0	15	0	0	15	1	23	0	0	24	0	0	1	0	1	0	0	0	0	0	40
1700-1800	0	6	0	0	6	0	6	0	0	6	0	0	0	0	0	0	0	1	0	1	13
Totals	0	168	18	0	186	16	164	0	0	180	19	2	8	0	29	0	1	2	0	3	398

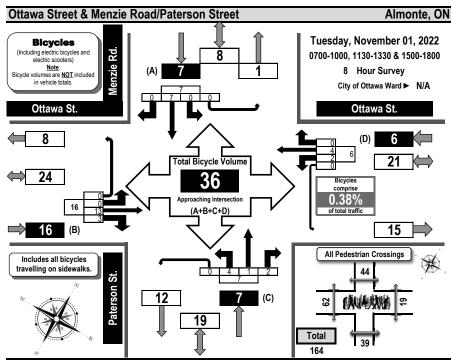

Comments:

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

Totals
Comments

1230-1330 1500-1600 1600-1700


School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

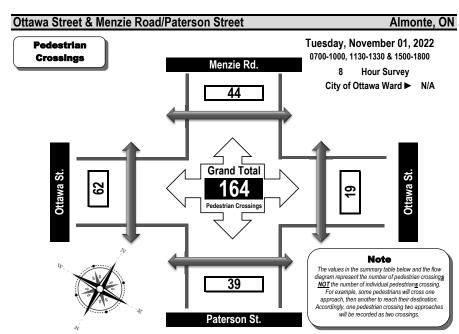
Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Buses Only

Turning Movement Count Bicycle Summary Flow Diagram

		Ot	tawa	St.			Ot	tawa	St.			Pate	ersor	ı St.			Me	nzie	Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			So	uthbou	und		
Time Period	LT	ST	RT	UT	EB Tot	Ľ	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0800-0900	0	2	0	0	2	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	3
0900-1000	0	1	1	0	2	0	2	0	0	2	0	0	0	0	0	0	2	0	0	2	6
1130-1230	0	2	0	0	2	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	3
1230-1330	0	3	1	0	4	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	5
1500-1600	0	2	1	0	3	0	0	0	0	0	1	1	0	0	2	0	1	0	0	1	6
1600-1700	0	2	0	0	2	2	1	0	0	3	0	0	2	0	2	0	2	0	0	2	9
1700-1800	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0	0	2	3
Totals	0	13	3	0	16	2	4	0	0	6	4	1	2	0	7	0	7	0	0	7	36

Comments:

Printed on: 11/5/2022


School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

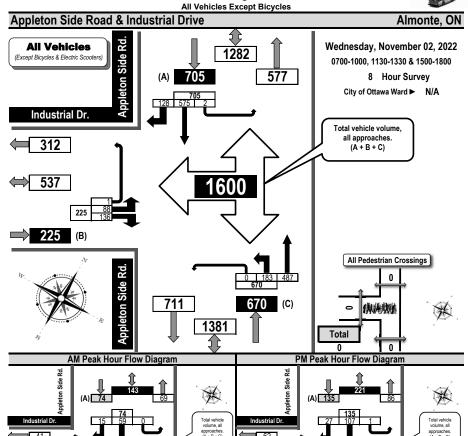
Prepared by: thetrafficspecialist@gmail.com

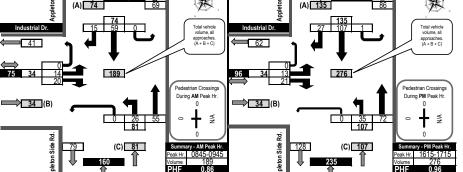
Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Tille Periou	Ottawa St.	Ottawa St.	Total	Paterson St.	Menzie Rd.	Total	Total
0700-0800	3	1	4	3	3	6	10
0800-0900	3	0	3	2	6	8	11
0900-1000	10	2	12	1	4	5	17
1130-1230	9	4	13	5	12	17	30
1230-1330	4	3	7	3	4	7	14
1500-1600	28	4	32	12	2	14	46
1600-1700	2	1	3	7	6	13	16
1700-1800	3	4	7	6	7	13	20
Totals	62	19	81	39	44	83	164

Comments:

Summary: Bicycles


School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.


Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

Printed on: 11/5/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: All Vehicles AM PM Peak

Turning Movement Count Summary, OFF and EVGN Peak Hour Flow Diagrams

All Vehicles Except Bicycles **Appleton Side Road & Industrial Drive** Almonte, ON **All Vehicles** Wednesday, November 02, 2022 1282 (Except Bicycles & Electric Scooters 0700-1000, 1130-1330 & 1500-1800 705 577 8 Hour Survey City of Ottawa Ward ► N/A Industrial Dr. Total vehicle volume. all approaches. 312 (A + B + C) 537 1600 **225** (B) All Pedestrian Crossings 711 670 (c) 1381 Total 0 **OFF Peak Hour Flow Diagram** EVENING Peak Hour Flow Diagram X Total vehicle volume, all approaches. (A + B + C) Total vehicle volume, all

Printed on: 11/5/2022

37 (B)

Prepared by: thetrafficspecialist@gmail.com

■ 0 (B)

During OFF Peak Hr.

Flow Diagrams: All Vehicles OFF EVGN Peak

During EVGN Pk. H

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

 Appleton Side Road & Industrial Drive
 Almonte, ON

 Survey Date:
 Wednesday, November 02, 2022
 Start Time:
 0700
 AADT Factor:
 0.9

 Weather AM:
 Sunny 5° C
 Survey Duration:
 8 Hrs.
 Survey Hours:
 0700-1000, 1130-1330 & 1500-1800

 Weather PM:
 Sunny 15° C
 Survey Organization:
 Survey Organization:
 Survey Hours:
 O700-1000, 1130-1330 & 1500-1800

		Indu	stria	ıl Dr				N/A				Ap	pleto	on S	ide	Rd.	Ap	pleto	on S	ide	Rd.		
		Ea	stbou	ınd			We	estbo	und				No	rthbo	und	-		Sou	ıthbo	und			
Time	ıт	ST	RT	UT	E/B	LT	ST	RT	UT	W/B	Street	LT	ST	RT	UT	N/B	LT	ST	RT	UT	S/B	Street	Grand
Period	L	31	KI	01	Tot	_	31	KI	O I	Tot	Total		31	KI	01	Tot	_	5	Z	01	Tot	Total	Total
0700-0800	5		12	1	18						18	13	45		0	58		64	9	0	73	131	149
0800-0900	8		15	0	23						23	27	53		0	80		58	19	0	77	157	180
0900-1000	10		15	0	25						25	22	49		0	71		61	8	0	69	140	165
1130-1230	14		23	0	37						37	18	53		0	71		69	24	1	94	165	202
1230-1330	18		6	0	24						24	17	68		0	85		65	18	0	83	168	192
1500-1600	9		26	0	35						35	30	82		0	112		85	15	0	100	212	247
1600-1700	11		19		30						30		71		0	101		106	26	0	132	233	263
1700-1800	13		20	0	33						33	26	66		0	92		67	9	1	77	169	202
Totals	88		136	1	225						225	183	487		0	670		575	128	2	705	1375	1600

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	Ed	quivalent 12	2-hour v	ehicle vo	olumes	. These	volum	es are o	calcula	ted by	multiply	ying the	8-hour	totals	by the	8 ➡12	expans	sion fac	ctor of 1	.39		
Equ. 12 Hr	122	0 189	1	313	0	0	0	0	0	313	254	677	0	0	931	0	799	178	3	980	1911	2224
		Average d	aily 12-h	our veh	icle vol	umes.	These	volume	s are ca	alculate	d by m	ultiplyin	ng the e	equival	ent 12-	hour to	tals by	the AA	DT fact	or of: ().9	
AADT 12-hr	110	0 170) 1	281	0	0	0	0	0	281	229	609	0	0	838	0	719	160	3	882	1720	2002
	24-H	our AADT.	These v	olumes a	are calc	ulated	by mul	ltiplying	the av	erage (faily 12	-hour ve	ehicle v	olume	s by th	e 12 🖈	24 exp	ansion	factor of	of 1.31		
AADT 24 Hr	144	0 223	3 2	369	0	0	0	0	0	369	300	798	0	0	1098	0	942	210	3	1155	2253	2622

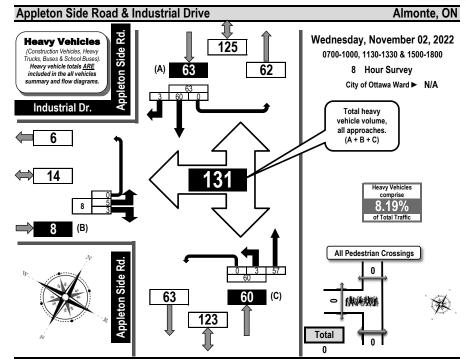
AADT and expansion factors	provided by the City of Ottawa
-----------------------------------	--------------------------------

AM Peak Ho	ur Fac	tor •)	0.	86									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betw	veen 0	700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0845-0945	14	0	20	0	34	0	0	0	0	0	34	26	55	0	0	81	0	59	15	0	74	155	189
OFF Peak H	our Fa	ctor	•	0.	81									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h &	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1130-1230	14	0	23	0	37	0	0	0	0	0	37	18	53	0	0	71	0	69	24	1	94	165	202
PM Peak Ho	ur Fac	tor =)	0.	96									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1615-1715	13	Λ	21	٥	34	Λ	0	Λ	U	0	34	35	72	Λ	0	107	n	107	27	1	135	242	276

Comments:

School buses comprise 7.63% of the heavy vehicle traffic.

Notes:

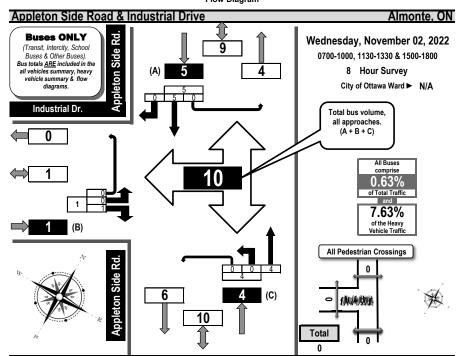

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: All Vehicles

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4 to 13) Flow Diagram

		Ind	ustrial	Dr.				N/A				Apple	ton Si	de Rd.			Apple	ton Si	de Rd		
		Ea	stbou	nd			W	estbou	ınd			No	rthbou	ınd			Soi	uthbou	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	1		1	0	2						0	8		0	8		5	0	0	5	15
0800-0900	0		1	0	1						0	5		0	5		6	1	0	7	13
0900-1000	3		0	0	3						1	5		0	6		6	0	0	6	15
1130-1230	0		0	0	0						0	7		0	7		8	0	0	8	15
1230-1330	1		0	0	1						1	11		0	12		9	0	0	9	22
1500-1600	0		0	0	0						0	14		0	14		9	0	0	9	23
1600-1700	0		1	0	1						1	5		0	6		13	1	0	14	21
1700-1800	0		0	0	0						0	2		0	2		4	1	0	5	7
Totals	5		3	0	8						3	57		0	60		60	3	0	63	131

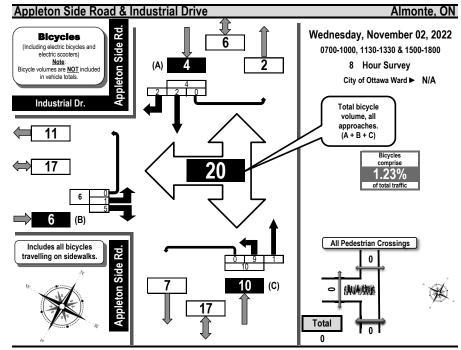
Comments


School buses comprise 7.63% of the heavy vehicle traffic.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

		Ind	ustrial	Dr.				N/A				Apple	ton Si	de Rd.			Apple	ton Si	de Rd		
		Ea	stbou	nd			We	estbou	ınd		_	No	rthbou	ınd			Soi	uthbou	ınd		i
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		1	0	1						0	0		0	0		1	0	0	1	2
0800-0900	0		0	0	0						0	1		0	1		1	0	0	1	2
0900-1000	0		0	0	0						0	0		0	0		0	0	0	0	0
1130-1230	0		0	0	0						0	0		0	0		0	0	0	0	0
1230-1330	0		0	0	0						0	1		0	1		0	0	0	0	1
1500-1600	0		0	0	0						0	0		0	0		1	0	0	1	1
1600-1700	0		0	0	0						0	2		0	2		2	0	0	2	4
1700-1800	0		0	0	0						0	0		0	0		0	0	0	0	0
Totals	0		1	0	1						0	4		0	4		5	0	0	5	10

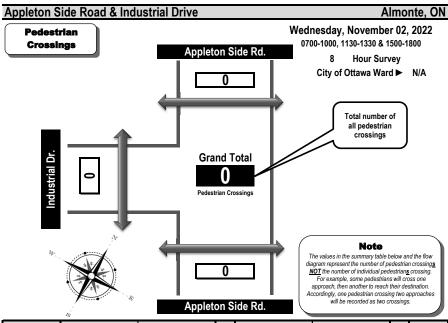

Comment

School buses comprise 7.63% of the heavy vehicle traffic.

Turning Movement Count Bicycle Summary Flow Diagram

		Ind	ustrial	Dr.				N/A				Apple	ton Si	de Rd			Apple	ton Si	de Rd.		
		Ea	stbou	nd			W	estbou	ınd			No	rthboı	ınd			Soi	uthbou	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		0	0	0						0	0		0	0		0	0	0	0	0
0800-0900	0		0	0	0						1	0		0	1		0	0	0	0	1
0900-1000	0		2	0	2						0	0		0	0		0	0	0	0	2
1130-1230	1		1	0	2						2	0		0	2		0	1	0	1	5
1230-1330	0		0	0	0						1	0		0	1		2	0	0	2	3
1500-1600	0		2	0	2						4	0		0	4		0	0	0	0	6
1600-1700	0		0	0	0						1	0		0	1		0	1	0	1	2
1700-1800	0		0	0	0						0	1		0	1		0	0	0	0	1
Totals	1		5	0	6						9	1		0	10		2	2	0	4	20

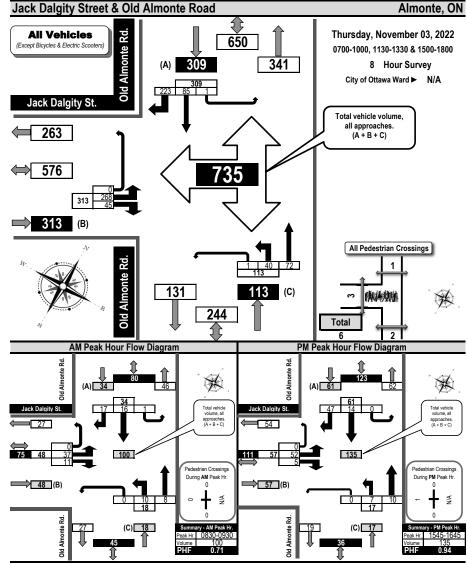
Comment


School buses comprise 7.63% of the heavy vehicle traffic.

Turning Movement Count

Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side C	rossing	Street	South Side Cr	ossing	North Side Crossi	ng Street	Grand
Time Period	Industrial Dr.	N/A	ı	Total	Appleton Sid	e Rd.	Appleton Side Ro	d. Total	Total
0700-0800	0			0	0		0	0	0
0800-0900	0			0	0		0	0	0
0900-1000	0	-		>	0		0	0	0
1130-1230	0			Pedest			0	0	0
1230-1330	0		Crossii	ngs Ob	served 0		0	0	0
1500-1600	0			0	0		0	0	0
1600-1700	0			0	0		0	0	0
1700-1800	0			0	0		0	0	0
Totals	0			0	0		0	0	0


School buses comprise 7.63% of the heavy vehicle traffic.

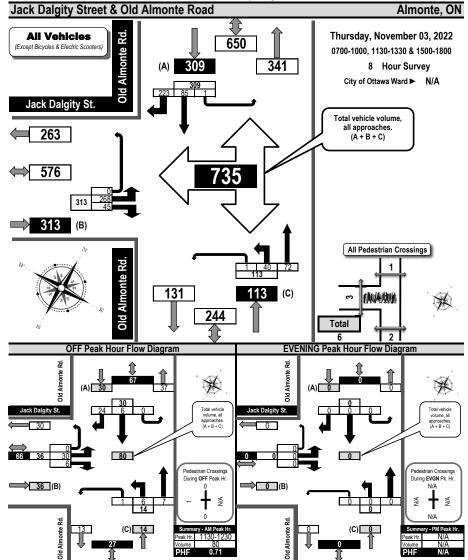
Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles **Jack Dalgity Street & Old Almonte Road**

Printed on: 11/6/2022

Summary: Pedestrian Crossings

Prepared by: thetrafficspecialist@gmail.com


Flow Diagrams: All Vehicles AM PM Peak

Turning Movement Count Summary, OFF and EVGN Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Printed on: 11/6/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: All Vehicles OFF EVGN Peak

Jack Dalgity Street & Old Almonte Road

Survey Date: Thursday November 03 2022

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Start Time:

0700

Almonte, ON

AADT Factor:

Our vey Do	iic.	muic	uuy,	14040	MINDO	00, 2	022					Otari		••		0100				u	ctoi.		0.5
Weather All	M:	Clear	& Sur	ny +1	۱° C	Sι	ırvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700	-1000), 1130)-133	0 & 1	500-1	800	
Weather PM	И:	Mainly	/ Clea	r 17°	С							Surv	eyor(s):		J. Mo	usse	au					
	J	ack	Dalg	ity S	St.			N/A				0	d Al	mor	nte F	₹d.	0	ld Al	mor	nte F	₹d.		
		Ea	stbou	ınd			We	stbo	und				No	rthbo	und			Sou	ıthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	29		4	0	33						33	3	6		0	9		5	14	0	19	28	61
0800-0900	22		10	0	32						32	9	7		0	16		9	16	0	25	41	73
0900-1000	45		6	0	51						51	4	8		0	12		12	18	1	31	43	94
1130-1230	30		6	0	36						36	6	7		1	14		6	24	0	30	44	80
1230-1330	30		4	0	34						34	0	9		0	9		9	23	0	32	41	75
1500-1600	38		5	0	43						43	3	16		0	19		18	40	0	58	77	120
1600-1700	45		6	0	51						51	9	11		0	20		12	51	0	63	83	134
1700-1800	29		4	0	33						33	6	8		0	14		14	37	0	51	65	98
Totals	268		45	0	313						313	40	72		1	113		85	223	1	309	422	735

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	Е	quivale	nt 12-h	our ve	hicle vol	umes.	These	volum	es are c	alculat	ed by m	nultiply	ing the	8-hour	totals	by the	3 🖈12	expans	sion fac	ctor of	1.39		
Equ. 12 Hr	373	0	63	0	435	0	0	0	0	0	435	56	100	0	1	157	0	118	310	1	430	587	1022
		Averag	ge dail	y 12-ho	our vehic	le volu	ımes. T	hese	volumes	are ca	lculated	d by m	ultiplyin	g the e	quival	lent 12-h	our to	tals by	the AA	DT fac	tor of: 0	.9	
AADT 12-hr	335	0	56	0	392	0	0	0	0	0	392	50	90	0	1	141	0	106	279	1	387	528	919
	24-H	our AAI	DT. The	ese vo	lumes a	re calc	ulated b	oy mul	ltiplying	the av	erage d	aily 12	-hour ve	hicle v	olume	s by the	12 ➡	24 expa	ansion	factor	of 1.31		
AADT 24 Hr	439	0	74	0	513	0	0	0	0	0	513	66	118	0	2	185	0	139	365	2	506	692	1205

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	ur Fac	tor •	•	0.	.71									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 0)700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
0830-0930	37	0	11	0	48	0	0	0	0	0	48	10	8	0	0	18	0	16	17	1	34	52	100
OFF Peak H	our Fa	ctor	→	0.	.83									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h &	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1130-1230	30	0	6	0	36	0	0	0	0	0	36	6	7	0	1	14	0	6	24	0	30	44	80
PM Peak Ho	ur Fac	tor =		0.	.94									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
15/15-16/15	52	Λ	- 5	0	57	n	n	Λ	٥	Λ	57	7	10	Λ	٥	17	٥	1/	47	Λ	61	78	135

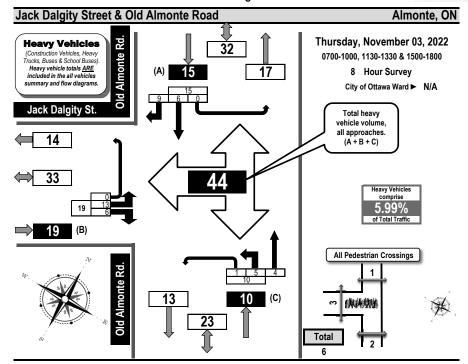
Comments:

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Notes

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

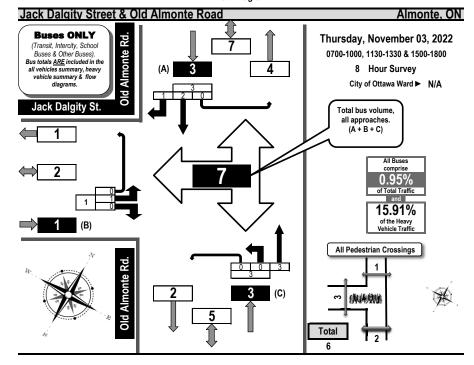
Printed on: 11/6/2022


Prepared by: thetrafficspecialist@gmail.com

Summary: All Vehicles

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4 to 13) Flow Diagram

		Jack	Dalgit	ty St.				N/A				Old A	Almont	e Rd.			Old A	lmont	e Rd.		
		Ea	stbou	nd			W	estbou	ınd			No	rthbou	ınd			Soi	uthbou	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	2		0	0	2						1	1		0	2		2	1	0	3	7
0800-0900	2		0	0	2						0	0		0	0		0	1	0	1	3
0900-1000	1		5	0	6						3	0		0	3		1	1	0	2	11
1130-1230	2		0	0	2						1	0		1	2		0	2	0	2	6
1230-1330	1		0	0	1						0	0		0	0		0	1	0	1	2
1500-1600	0		1	0	1						0	2		0	2		1	1	0	2	5
1600-1700	5		0	0	5						0	0		0	0		1	2	0	3	8
1700-1800	0		0	0	0						0	1		0	1		1	0	0	1	2
Totals	13		6	0	19						5	4		1	10		6	9	0	15	44


Comments

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

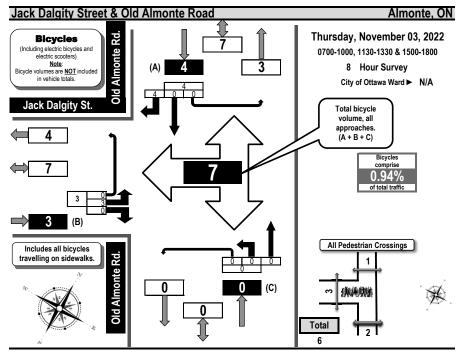
Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

		Jack	Dalgi	ty St.				N/A				Old A	Almont	e Rd.			Old A	Almont	e Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			Soi	uthbou	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		0	0	0						0	1		0	1		1	0	0	1	2
0800-0900	0		0	0	0						0	0		0	0		0	0	0	0	0
0900-1000	1		0	0	1						0	0		0	0		1	0	0	1	2
1130-1230	0		0	0	0						0	0		0	0		0	0	0	0	0
1230-1330	0		0	0	0						0	0		0	0		0	0	0	0	0
1500-1600	0		0	0	0						0	2		0	2		0	1	0	1	3
1600-1700	0		0	0	0						0	0		0	0		0	0	0	0	0
1700-1800	0		0	0	0						0	0		0	0		0	0	0	0	0
Totals	1		0	0	1						0	3		0	3		2	1	0	3	7

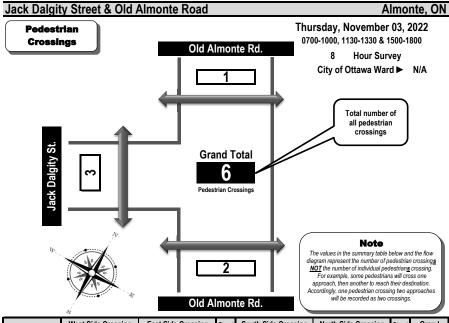
Comment

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Printed on: 11/6/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles Printed on: 11/6/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Buses Only


Turning Movement Count Bicycle Summary Flow Diagram

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram



		Jack	Dalgit	y St.				N/A				Old A	lmon	te Rd.			Old A	Almon	te Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			So	uthbo	und		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	1		0	0	1						0	0		0	0		0	0	0	0	1
0800-0900	1		0	0	1						0	0		0	0		0	0	0	0	1
0900-1000	0		0	0	0						0	0		0	0		0	0	0	0	0
1130-1230	0		0	0	0						0	0		0	0		0	0	0	0	0
1230-1330	0		0	0	0						0	0		0	0		0	0	0	0	0
1500-1600	1		0	0	1						0	0		0	0		0	0	0	0	1
1600-1700	0		0	0	0						0	0		0	0		0	3	0	3	3
1700-1800	0		0	0	0						0	0		0	0		0	1	0	1	1
Totals	3		0	0	3						0	0		0	0		0	4	0	4	7

Comment

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Jack Dalgity St.	N/A	Total	Old Almonte Rd.	Old Almonte Rd.	Total	Total
0700-0800	1		1	1	0	1	2
0800-0900	0		0	0	0	0	0
0900-1000	0		0	0	0	0	0
1130-1230	1		1	1	0	1	2
1230-1330	0		0	0	0	0	0
1500-1600	1		1	0	0	0	1
1600-1700	0		0	0	1	1	1
1700-1800	0		0	0	0	0	0
Totals	3		3	2	1	3	6

Comments

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

ROAD NAME	FROM:	то:	AADT	SPEED	MAINTENANCE CLASS	LOWER TIER MUNICIPALITY
16-South Lavant Road	PIN #2264 (Poland)	Hwy 511 (Co Rd 511)	350	80	4	Lanark Highlands
16-Wolf Grove Road	Hwy 511 (Co Rd 511)	Hopetown Hamlet Limit (60 Max Sign)	1100	60	4	Lanark Highlands
16-Wolf Grove Road	Hopetown Hamlet Limit (60 Max Sign)	PIN #4248 (Middleville)	1100	80	3	Lanark Highlands
16-Wolf Grove Road	PIN #4248 (Middleville)	Co Rd 8 (6th Con C Lanark)	1100	60	4	Lanark Highlands
16-Wolf Grove Road	Co Rd 8 (6th Con C Lanark)	PIN #4132 East Ent (Middleville)	1400	60	4	Lanark Highlands
16-Wolf Grove Road	PIN #4132 East Ent (Middleville)	Ramsay Con 1	1400	80	3	Lanark Highlands
16-Wolf Grove Road	Ramsay Con 1	Tatlock Road	1400	80	3	Mississippi Mills
16-Wolf Grove Road	Tatlock Road	Civitan Hall Ent (Almonte)	3000	80	3	Mississippi Mills
16-Almonte Street	Civitan Hall Ent (Almonte)	Christian Street (Co Rd 29)	3200	60	3	Mississippi Mills
	, ,					
16A-Perth Street	Christian Street (Co Rd 29)	Bridge Street	4500	50	3	Mississippi Mills
16A-Bridge Street	Perth Street	Centre of Maclan Bridge	4500	50	3	Mississippi Mills
16A-Queen Street	Centre of Maclan Bridge	Martin Street South	8000	50	3	Mississippi Mills
16A-Martin Street South	Queen Street	Ottawa Street	8000	50	3	Mississippi Mills
						11
17-Derry Side Road	Richmond Road (Co Rd 10)	9th Line Beckwith	650	80	4	Beckwith
17-Cemetery Side Road	9th Line Beckwith	Hwy. #7	1200	50/70	3	Beckwith
17-Appleton Side Road	Hwy. #7	River Road (Co Rd 11)	800	80	4	Beckwith/ Mississippi Mills
17-Appleton Side Road	River Road (Co Rd 11)	March Road (Co Rd 49)	1100	80	3	Mississippi Mills
17-Martin Street North	Ottawa Street	Brookdale Street	2200	50/40	4	Mississippi Mills
17-Martin Street North	Brookdale Street	Railway Crossing	1100	80	3	Mississippi Mills
17-Martin Street North	Railway Crossing	PIN #6466 (Blakenev)	1100	80	3	Mississippi Mills
17-Martin Street North	PIN #6466 (Blakeney)	Blakeney Road (Co Rd 17)	1100	60	4	Mississippi Mills
17-Blakeney Road	Blakeney Road (Co Rd 17)	Ridge Road	650	60	4	Mississippi Mills
17-Blakeney Road	Ridge Road	Panmure Road	650	80	4	Mississippi Mills
17-Panmure Road	Blakeney Road (South)	Blakeney Road (North)	300	80	4	Mississippi Mills
17-Blakeney Road	Panmure Road	Kinburn Sideroad (Co Rd 20)	300	80/60	4	Mississippi Mills
i						11
18-Port Elmsley Road	Rideau Ferry Road (Co Rd 1)	PIN #310 DNE Township Office	1150	80	3	Drummond North Elmsley
18-Port Elmsley Road	PIN #310 DNE Township Office	Co. Rd. #43	1150	60	4	Drummond North Elmsley
					-	,
19-Bennett Lake Road	Fallbrook Road (Co Rd 7)	PIN #155 (Fallbrook)	450	50	5	Tay Valley
19-Bennett Lake Road	PIN #155 (Fallbrook)	Osprey Road	450	80	4	Tay Valley
19-Bennett Lake Road	Osprey Road	Start of Gravel	120	80	4	Tay Valley
19-Bennett Lake Road	Start of Gravel	End of Gravel	120	80	4	Tay Valley
19-Bennett Lake Road	End of Gravel	Maberly Elphin Rd. (Co Rd 36)	150	80	4	Tay Valley
20-Kinburn Side Road	Timmins Road (Ottawa Bndry)	Blakeney Rd. (Co Rd 17)	1900	80	3	Mississippi Mills
20-Kinburn Side Road	Blakeney Rd. (Co Rd 17)	Co Rd 29 North	1900	60	4	Mississippi Mills
20-Waba Road	Co. Rd. #29 North	Five Arches Drive	1650	50	4	Mississippi Mills
20-Waba Road	Five Arches Drive	Shaw Road (Co. Rd. #22)	1650	80	3	Mississippi Mills
20-Waba Road	Shaw Road (Co. Rd. #22)	Campbell Side Rd. (Co. Rd. #24)	1000	80	3	Mississippi Mills
20-Waba Road	Campbell Side Rd. (Co. Rd. #24)	Robertson Line (Renfrew Bndry)	1000	80	3	Mississippi Mills
	(00.114.712)	in a street Line (1.13 mon Briding)	1.300		, ,	····
21-Lally Road	Narrows Lock Rd. (Co. Rd. #14)	Lally Lake Drive	100	60	5	Tay Valley
21-Elm Grove Road	Lally Lake Drive	Tay Valley Sign	600	60	4	Tay Valley
	Tay Valley Sign	Rideau Ferry Rd. (Co. Rd. #1)	1600	60	4	Drummond North Elmsley
21-Elm Grove Road	Liav valley Sign					

ROAD NAME	FROM:	TO:	AADT	SPEED	MAINTENANCE CLASS	LOWER TIER MUNICIPALITY
22-Shaw Road	Waba Road (Co. Rd. #20)	Lunney Road (Ottawa Bndry)	500	80	4	Mississippi Mills
23-Rosedale Road South	Co. Rd. #43	Guthrie Road	600	80	4	Montague
23-Rosedale Road South	Guthrie Road	Roger Stevens Drive (Co. Rd. #4)	600	60/80	4	Montague
24-Peneshula Road	Snye Road	Bellamy Road	800	60	4	Lanark Highlands/ Mississippi Mills
24-Bellamy Road	Peneshula Road	4th Con. Pakenham	900	80	4	Mississippi Mills
24-4th Con. Pakenham	Bellamy Road	Campbell Side Road	900	80	4	Mississippi Mills
24-Campbell Side Road	4th Con. Pakenham	Waba Road (Co. Rd. #20)	600	80	4	Mississippi Mills
00 Manla ale Accasa	11 #7	1 -1 0	40000	00	0	Towns of Ocaletes Disco
29-McNeely Avenue	Hwy. #7	Lake Avenue	12000	80	3	Town of Carleton Place
29-McNeely Avenue	Lake Avenue	Town Line Rd. East (Co. Rd. #29)	11000	60		Town of Carleton Place
29-Town Line Road East 29-County Rd. #29 South	McNeely Avenue	Ramsay Con. 8 Wilson Street (Co. Rd. #11)	9000	50 80	3 2	Town of Carleton Place
29-County Rd. #29 South	Ramsay Con. 8 Wilson Street (Co. Rd. #11)	Perth Street (Co. Rd. #11)				Mississippi Mills
29-County Rd. #29 South 29-Christian Street	Perth Street (Co. Rd. #11)	Almonte Street (Co. Rd. #16A)	6000 5000	80 70	3	Mississippi Mills Mississippi Mills
29-Christian Street	Almonte Street (Co. Rd. #16A)	Gleeson Road	3700	70	3	Mississippi Mills
29-County Rd. #29 North	Gleeson Road	Snedden Road	3700	80	3	Mississippi Mills
29-County Rd. #29 North	Snedden Road	McWatty Road	3700	80	3	Mississippi Mills
29-County Rd. #29 North	McWatty Road	Waba Road (Co. Rd. #20)	3700	50	4	Mississippi Mills
29-County Rd. #29 North	Waba Road (Co. Rd. #20)	Kinburn Sideroad (Co. Rd. #20)	2800	50	4	Mississippi Mills
29-County Rd. #29 North	Kinburn Sideroad (Co. Rd. #20)	Walter Bradley Road	2800	80	3	Mississippi Mills
29-County Rd. #29 North	Walter Bradley Road	Lanark County Sign (Ottawa Bndry)	2800	80	3	Mississippi Mills/ City of Ottawa
20 004, 1.4120 1.40.41	Trailer Drawing Fredu	Zanam County eign (Chana Zhaiy)				innesissippi mino, only or onama
36-Bolingbroke Road	Leeds Bndry	Althorpe Road (Co. Rd. #6)	800	80	4	Tay Valley
36-Bolingbroke Road	Althorpe Road (Co. Rd. #6)	Hanna Road	750	80	4	Tay Valley
36-Bolingbroke Road	Hanna Road	Maberly Station Road	500	80	4	Tay Valley
36-Bolingbroke Road	Maberly Station Road	Hwy. #7	500	60	4	Tay Valley
36-Maberly Elphin Road	Hwy. #7	PIN #400 (Maberly)	600	60	4	Tay Valley
36-Maberly Elphin Road	PIN #400 (Maberly)	Bennett Lake Rd. (Co. Rd. #19)	600	80	4	Tay Valley
36-Maberly Elphin Road	Bennett Lake Rd. (Co. Rd. #19)	LDNS Sign (Twp Bndry)	600	80	4	Tay Valley
36-Elphin Maberly Road	LDNS Sign (Twp Bndry)	Elphin Hamlet Sign West	600	80	4	Lanark Highlands
36-Elphin Maberly Road	Elphin Hamlet Sign West	Co Rd 12 (McDonalds Corners Rd)	500	60	4	Lanark Highlands
36-Elphin Maberly Road	Co Rd 12 (McDonalds Corners Rd)	Elphin Hamlet Sign North	500	60	4	Lanark Highlands
36-Elphin Maberly Road	Elphin Hamlet Sign North	PIN #3923 (Frontenac Bndry)	500	60/80	4	Lanark Highlands
43-Hwy 43	Merrickville Bndry (West)	Rosedale Rd. S (Co. Rd. #23)	3600	80	3	Montague
43-Hwy 43	Rosedale Rd. S (Co. Rd. #23)	New Smiths Falls Boundary	4800	80	3	Montague
43-Hwy 43	Mazie Street (SFalls Bndry)	Station Road	9000	80	2	Drummond North Elmsley
43-Hwy 43	Station Road	Port Elmsley Rd. (Co. Rd. #18)	9000	60	3	Drummond North Elmsley
43-Hwy 43 43-Hwy 43	Port Elmsley Rd. (Co. Rd. #18) Meadow Lane	Meadow Lane Irwin Street	8500 7000	60	3	Drummond North Elmsley Drummond North Elmsley/ Town of Perth
43-11Wy 43	ivieadow Lane	IIWIII Street	7000	80	3	Drummond North Eirisley/ Town of Perin
49-March Road	Ottawa Bndry	Appleton Side Rd. (Co. Rd. #17)	7500	80	2	Mississippi Mills
	,	11 (55)	1.555		_	I Fr. com-
511-Lanark Road	Hwy. #7	PIN #40 (Perth Bndry)	8000	60	3	Tay Valley/ Town of Perth
511-Hwy 511	PIN #40 (Perth Bndry)	Clarchris Road	8000	70	3	Tay Valley/ Drummond North Elmsley
511-Hwy 511	Clarchris Road	PIN #1325 (Balderson South)	8000	80	2	Tay Valley/ Drummond North Elmsley

Appendix C

2022 Existing Synchro Worksheets

MOVEMENT SUMMARY

Folder: General)]

Site Category: (None)

Roundabout

		vement												
Mov ID	Turn	INP VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	% -	veh/h	% 1	v/c	sec		veh	m [*]			<u> </u>	km/h
South	n: Apple	eton												
1	L2	44	2.0	48	2.0	0.101	8.9	LOS A	0.4	2.7	0.41	0.59	0.41	48.4
2	T1	7	2.0	8	2.0	0.101	3.4	LOS A	0.4	2.7	0.41	0.59	0.41	47.8
3	R2	41	2.0	45	2.0	0.101	3.7	LOS A	0.4	2.7	0.41	0.59	0.41	46.4
Appro	oach	92	2.0	101	2.0	0.101	6.1	LOS A	0.4	2.7	0.41	0.59	0.41	47.5
East:	CR 49													
4	L2	31	2.0	34	2.0	0.111	7.7	LOSA	0.6	4.3	0.20	0.35	0.20	49.8
5	T1	271	2.0	298	2.0	0.111	2.2	LOS A	0.6	4.4	0.20	0.30	0.20	49.6
6	R2	15	2.0	16	2.0	0.111	2.7	LOS A	0.6	4.4	0.19	0.26	0.19	48.3
Appro	oach	317	2.0	348	2.0	0.111	2.8	LOS A	0.6	4.4	0.20	0.30	0.20	49.5
North	: Rams	say												
7	L2	26	2.0	29	2.0	0.058	8.7	LOSA	0.2	1.5	0.38	0.55	0.38	48.5
8	T1	11	2.0	12	2.0	0.058	3.2	LOS A	0.2	1.5	0.38	0.55	0.38	47.9
9	R2	17	2.0	19	2.0	0.058	3.5	LOS A	0.2	1.5	0.38	0.55	0.38	46.5
Appro	oach	54	2.0	59	2.0	0.058	5.9	LOS A	0.2	1.5	0.38	0.55	0.38	47.7
West	: Ottaw	а												
10	L2	8	2.0	9	2.0	0.138	7.8	LOSA	0.7	5.2	0.22	0.29	0.22	50.3
11	T1	348	2.0	382	2.0	0.138	2.3	LOSA	0.7	5.3	0.21	0.28	0.21	49.7
12	R2	37	2.0	41	2.0	0.138	2.7	LOS A	0.7	5.3	0.20	0.28	0.20	48.3
Appro	oach	393	2.0	432	2.0	0.138	2.4	LOS A	0.7	5.3	0.21	0.28	0.21	49.6
All Ve	ehicles	856	2.0	941	2.0	0.138	3.2	LOSA	0.7	5.3	0.24	0.34	0.24	49.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: PLUS / IPC | Processed: November 23, 2022 2-35.55 PM | Project: C:Users/AndrewHarte/CGH TRANSPORTATION/CGH Working - Documents/Projects/2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \ 2022-142 Sidra 2022-1122 sigr9

MOVEMENT SUMMARY

♥ Site: 101 [Ottawa/CR49 & Appleton/Ramsay Existing PM (Site Folder: General)]

Site Category: (None)

Roundabout

Mov	Turn	INP	UT _	DEM	AND	Deg.	Aver	Level of	95% BA	CK OF_	Prop.	Effective	Aver.	Aver.
ID		VOLU	MES	FLO		Satn		Service	QUE		Que	Stop	No.	Speed
		[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate	Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Apple													
1	L2	67	2.0	69	2.0	0.116	8.8	LOS A	0.5	3.2	0.41	0.60	0.41	48.1
2	T1	12	2.0	12	2.0	0.116	3.3	LOS A	0.5	3.2	0.41	0.60	0.41	47.5
3	R2	35	2.0	36	2.0	0.116	3.6	LOS A	0.5	3.2	0.41	0.60	0.41	46.2
Appro	oach	114	2.0	118	2.0	0.116	6.6	LOS A	0.5	3.2	0.41	0.60	0.41	47.4
East:	CR 49													
4	L2	56	2.0	58	2.0	0.221	7.9	LOS A	1.3	9.4	0.28	0.36	0.28	49.6
5	T1	555	2.0	572	2.0	0.221	2.4	LOS A	1.3	9.6	0.27	0.32	0.27	49.3
6	R2	46	2.0	47	2.0	0.221	2.8	LOS A	1.3	9.6	0.26	0.28	0.26	48.0
Appro	oach	657	2.0	677	2.0	0.221	2.9	LOS A	1.3	9.6	0.27	0.32	0.27	49.2
North	: Rams	ay												
7	L2	19	2.0	20	2.0	0.060	9.5	LOS A	0.2	1.6	0.50	0.61	0.50	48.4
8	T1	15	2.0	15	2.0	0.060	4.0	LOS A	0.2	1.6	0.50	0.61	0.50	47.8
9	R2	17	2.0	18	2.0	0.060	4.3	LOS A	0.2	1.6	0.50	0.61	0.50	46.4
Appro	oach	51	2.0	53	2.0	0.060	6.2	LOSA	0.2	1.6	0.50	0.61	0.50	47.5
West	Ottaw	а												
10	L2	17	2.0	18	2.0	0.138	7.9	LOS A	0.7	5.2	0.24	0.31	0.24	50.0
11	T1	332	2.0	342	2.0	0.138	2.4	LOS A	0.7	5.3	0.23	0.30	0.23	49.6
12	R2	62	2.0	64	2.0	0.138	2.8	LOSA	0.7	5.3	0.22	0.29	0.22	48.2
Appro	oach	411	2.0	424	2.0	0.138	2.6	LOS A	0.7	5.3	0.23	0.30	0.23	49.4
ΛII \/c	hicles	1233	2.0	1271	2.0	0.221	3.3	LOSA	1.3	9.6	0.28	0.35	0.28	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2:35:58 PM

Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \2022-142 Sidra 2022-11-22.sip9

Lanes, Volumes, Timings

2: Paterson Street/Menzie Street & Ottawa Street

Existing AM Peak Hour

	•	\rightarrow	*	1	-	•	1	1	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	1	7		4			4	
Traffic Volume (vph)	1	509	65	50	370	3	77	9	77	2	14	6
Future Volume (vph)	1	509	65	50	370	3	77	9	77	2	14	6
Satd. Flow (prot)	0	1658	0	1626	1664	1483	0	1529	0	0	1660	0
Flt Permitted				0.427				0.838			0.972	
Satd. Flow (perm)	0	1658	0	730	1664	1439	0	1300	0	0	1620	0
Satd. Flow (RTOR)		12				36		50			6	
Lane Group Flow (vph)	0	618	0	54	398	3	0	176	0	0	23	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		26.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	58.0	58.0		58.0	58.0	58.0	32.0	32.0		32.0	32.0	
Total Split (%)	64.4%	64.4%		64.4%	64.4%	64.4%	35.6%	35.6%		35.6%	35.6%	
Maximum Green (s)	51.7	51.7		51.7	51.7	51.7	26.0	26.0		26.0	26.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0	13.0	18.0	18.0		18.0	18.0	
Pedestrian Calls (#/hr)	1	1		4	4	4	2	2		10	10	
Act Effct Green (s)		55.5		55.5	55.5	55.5		14.7			14.7	
Actuated g/C Ratio		0.67		0.67	0.67	0.67		0.18			0.18	
v/c Ratio		0.55		0.11	0.36	0.00		0.64			0.08	
Control Delay		10.5		7.1	8.0	0.0		32.4			21.0	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		10.5		7.1	8.0	0.0		32.4			21.0	
LOS		В		Α	Α	Α		С			С	
Approach Delay		10.5			7.8			32.4			21.0	
Approach LOS		В			Α			С			С	
Queue Length 50th (m)		39.0		2.4	21.2	0.0		17.1			2.1	
Queue Length 95th (m)		98.1		9.3	53.8	0.0		35.8			7.6	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		1118		490	1118	978		445			515	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.55		0.11	0.36	0.00		0.40			0.04	
Intersection Summary												

Scenario 1 Mill Valley Estates 11:59 pm 11/17/2022 Existing

Synchro 11 Report Page 1 Lanes, Volumes, Timings
2: Paterson Street/Menzie Street & Ottawa Street

Existing AM Peak Hour

Cycle Length: 90

Actuated Cycle Length: 82.6

Natural Cycle: 65

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 12.8

Intersection Capacity Utilization 75.5%

ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

3: Appleton Side Road (Country Road 17) & Industrial Drive

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EBL	EBR	INDL			SBR
Lane Configurations		14	10	4	}	17
Traffic Vol, veh/h	37 37	11	10	8	16 16	17 17
Future Vol, veh/h	0	11	0	0	0	0
Conflicting Peds, #/hr		_	-	_	-	•
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	71	71	71	71	71	71
Heavy Vehicles, %	3	45	30	2	6	6
Mvmt Flow	52	15	14	11	23	24
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	74	35	47	0		0
Stage 1	35	-	-	-	-	-
Stage 2	39	-		-	-	-
Critical Hdwy	6.43	6.65	4.4	_		
Critical Hdwy Stg 1	5.43	-	7.7			
Critical Hdwy Stg 2	5.43	-	-		-	
Follow-up Hdwy	3.527	3.705	2.47			
Pot Cap-1 Maneuver	927	927	1398			-
Stage 1	985	521	1000	-		
Stage 2	981					
Platoon blocked. %	901	-	-			
	040	007	4200	-	-	-
Mov Cap-1 Maneuver	918	927	1398	-	-	
Mov Cap-2 Maneuver	918	-	-	-	-	-
Stage 1	975	-	-	-	-	-
Stage 2	981	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.2		4.2		0	
HCM LOS	Α.Δ		7.2		U	
TIOW LOO	^					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1398	-	920	-	-
HCM Lane V/C Ratio		0.01	-	0.073	-	-
HCM Control Delay (s))	7.6	0	9.2	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0.2	-	-
	,					

A A

- 0.1 - -

- -

HCM Lane LOS

HCM 95th %tile Q(veh)

2: Paterson Street/Menzie Street & Ottawa Street

Existing
PM Peak Hour

•	-	*	1	_	_	1	T		-	¥	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
	4		ሻ	↑	7		4			4	
4	510	47	60	741	11	86	8	64	7	3	
4	510	47	60	741	11	86	8	64	7	3	
0	1703	0	1658	1728	1483	0	1597	0	0	1608	
	0.996		0.311				0.821			0.887	
0	1696	0	539	1728	1438	0	1337	0	0	1460	
	7				36		37			5	
0		0	63		12	0		0			
Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
	2		1	6			8			4	
2			6		6	8			4		
2	2		1	6	6	8	8		4	4	
10.0	10.0		5.0	10.0	10.0	10.0	10.0		10.0	10.0	
26.3	26.3		11.3	26.3	26.3	31.0	31.0		31.0	31.0	
47.7	47.7		11.3	59.0	59.0	31.0	31.0		31.0	31.0	
53.0%	53.0%		12.6%	65.6%	65.6%	34.4%	34.4%		34.4%	34.4%	
3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
	0.0		0.0	0.0	0.0		0.0			0.0	
	6.3		6.3	6.3	6.3		6.0			6.0	
Lag	Lag		Lead								
Yes	Yes		Yes								
Max	Max		None	Max	Max	None	None		Max	Max	
	43.7		52.7	52.7	52.7		25.0			25.0	
	0.49		0.59	0.59	0.59		0.28			0.28	
	0.71		0.17	0.77	0.01		0.42			0.04	
	25.0		9.1	20.6	0.5		24.2			19.6	
	0.0		0.0	0.0	0.0		0.0			0.0	
	25.0		9.1	20.6	0.5		24.2			19.6	
	С		Α	С	Α		С			В	
	25.0			19.5			24.2			19.6	
	С			В			С			В	
	80.3		4.3	93.9	0.0		17.8			1.3	
	122.4		9.4	144.2	0.5		35.8			5.8	
	113.0			108.0			153.2			106.0	
					30.0						
	826		377	1011	856		398			409	
	0		0	0	0		0			0	
	0		0	0	0		0			0	
	0		0	0	0		0			0	
	0.71		0.17	0.77	0.01		0.42			0.04	
oord											
	EBL 4 4 0 0 Perm 2 2 10.0 26.3 47.7 53.0% 3.7 2.6 Lag Yes Max	EBL EBT 4 510 4 510 0 1703 0.996 0 1696 7 0 590 Perm NA 2 2 2 2 10.0 10.0 26.3 26.3 47.7 47.7 53.0% 53.0% 3.7 3.7 2.6 2.6 0.0 6.3 Lag Lag Lag Yes Yes Max Max 43.7 0.49 0.71 25.0 0.0 0.5 C 25.0 C 25.0 C 80.3 122.4 113.0 826 0 0 0 0 0 0.71	EBL EBT EBR 4 510 47 4 510 47 0 1703 0 0.996 0 1696 0 7 0 590 0 Perm NA 2 2 2 2 2 2 10.0 10.0 26.3 26.3 47.7 47.7 53.0% 53.0% 3.7 3.7 2.6 2.6 0.0 6.3 Lag Lag Lag Yes Yes Max Max 43.7 0.49 0.71 25.0 0.0 25.0 C 25.0 C 25.0 C 25.0 C 80.3 122.4 113.0	EBL EBT EBR WBL 4 510 47 60 4 510 47 60 0 1703 0 1658 0.996 0 .0.311 0 1696 0 539 7 0 590 0 63 Perm NA pm+pt 2 1 2 6 2 2 1 10.0 10.0 5.0 26.3 26.3 11.3 47.7 47.7 11.3 53.0% 53.0% 12.6% 3.7 3.7 3.7 2.6 2.6 2.6 0.0 0.0 6.3 6.3 Lag Lag Lead Yes Yes Max Max None 43.7 52.7 0.49 0.59 0.71 0.17 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 25.0 9.1 0.0 0.0 0.0 25.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EBL EBT EBR WBL WBT 4 510 47 60 741 4 510 47 60 741 0 1703 0 1658 1728 0.996 0 3.311 0 1696 0 539 1728 7 0 590 0 63 780 Perm NA pm+pt NA 2 1 6 2 6 2 2 1 6 2 1 6 2 2 1 6 0.0 10.0 5.0 10.0 26.3 26.3 11.3 26.3 47.7 47.7 11.3 59.0 53.0% 53.0% 12.6% 65.6% 3.7 3.7 3.7 3.7 3.7 2.6 2.6 2.6 2.6 2.6 0.0 0.0 0.0 0.0 6.3 6.3 6.3 6.3 Lag Lag Lead Yes Yes Yes Max Max None Max 43.7 52.7 52.7 0.49 0.59 0.59 0.71 0.17 0.77 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EBL EBT EBR WBL WBT WBR 4 510 47 60 741 11 4 510 47 60 741 11 0 1703 0 1658 1728 1483 0.996 0.311 0 1696 0 539 1728 1438 7 36 0 590 0 63 780 12 Perm NA pm+pt NA Perm 2 1 6 6 2 2 2 1 6 6 6 2 2 2 1 6 6 6 10.0 10.0 5.0 10.0 10.0 26.3 26.3 11.3 26.3 26.3 47.7 47.7 11.3 59.0 59.0 53.0% 53.0% 12.6% 65.6% 65.6% 3.7 3.7 3.7 3.7 3.7 3.7 3.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 0.0 0.0 0.0 0.0 0.0 6.3 6.3 6.3 6.3 6.3 Lag Lag Lead Yes Yes Yes Max Max None Max Max 43.7 52.7 52.7 52.7 0.49 0.59 0.59 0.59 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.7 0.49 0.59 0.59 0.59 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	EBL EBT EBR WBL WBT WBR NBL 4 510 47 60 741 11 86 4 510 47 60 741 11 86 0 1703 0 1658 1728 1483 0 0.996 0.311 0 1696 0 539 1728 1438 0 7 36 0 590 0 63 780 12 0 Perm NA pm+pt NA Perm Perm 2 1 6 6 6 8 2 2 2 1 6 6 6 8 2 2 2 1 6 6 6 8 10.0 10.0 5.0 10.0 10.0 10.0 26.3 26.3 11.3 26.3 26.3 31.0 47.7 47.7 11.3 59.0 59.0 31.0 53.0% 53.0% 12.6% 65.6% 65.6% 34.4% 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.3 2.6 2.6 2.6 2.6 2.6 2.6 2.7 0.0 0.0 0.0 0.0 0.0 6.3 6.3 6.3 6.3 6.3 Lag Lag Lead Yes Yes Yes Max Max None Max Max None 43.7 52.7 52.7 52.7 0.49 0.59 0.59 0.59 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 0.0 10.0 0.0 0.0 25.0 9.1 20.6 0.5 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.71 0.17 0.77 0.01 25.0 9.1 20.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EBL EBR EBR WBL WBT WBR NBT	EBL EBT EBR WBL WBT WBR NBL NBT NBR 4 510 47 60 741 11 86 8 64 4 510 47 60 741 11 86 8 64 0 1703 0 1658 1728 1483 0 1597 0 0.996 0.311 0.821 0 1696 0 539 1728 1438 0 1337 0 7 36 37 0 0 590 0 63 780 12 0 166 0 Perm NA pm+pt NA Perm Perm NA 2 1 6 6 8 8 2 2 2 1 6 6 6 8 8 2 2 2 1 6 6 6 8 8 2 2 2 1 6 6 6 8 8 2 2 2 1 6 6 6 8 8 3 7 0 10.0 10.0 10.0 10.0 10.0 26.3 26.3 11.3 26.3 26.3 31.0 31.0 47.7 47.7 11.3 59.0 59.0 31.0 31.0 47.7 47.7 11.3 59.0 59.0 31.0 31.0 53.0% 53.0% 12.6% 65.6% 65.6% 34.4% 34.4% 3.7 3.7 3.7 3.7 3.7 3.3 3.3 3.3 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 6.3 6.3 6.3 6.3 6.0 Lag Lag Lead Yes Yes Yes Max Max None None 43.7 52.7 52.7 52.7 52.7 25.0 0.49 0.59 0.59 0.59 0.28 0.71 0.17 0.77 0.01 0.42 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.1 20.6 0.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 4 510 47 60 741 11 86 8 64 7 4 510 47 60 741 11 86 8 64 7 0 1703 0 1658 1728 1483 0 1597 0 0 0.996 0.311 0.021 0 1696 0 539 1728 1438 0 1337 0 0 7 36 37 7 0 590 0 63 780 12 0 166 0 0 0 590 0 63 780 12 0 166 0 0 0 66 6 6 8 8 4 4 2 2 2 1 6 6 6 8 8 4 4 2 2 2 1 6 6 6 8 8 8 4 2 2 2 1 6 6 6 8 8 8 4 2 2 2 1 6 6 6 8 8 8 4 2 10.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 26.3 26.3 11.3 26.3 26.3 31.0 31.0 31.0 27.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.3 3.3	BEL BER BER WBL WBT WBR NBL NBT NBR SBL SBT

Scenario 1 Mill Valley Estates 11:59 pm 10/02/2018 Existing

Synchro 11 Report Page 1 Lanes, Volumes, Timings 2: Paterson Street/Menzie Street & Ottawa Street Existing PM Peak Hour

Intersection Signal Delay: 22.0 Intersection LOS: C Intersection Capacity Utilization 78.6% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Scenario 1 Mill Valley Estates 11:59 pm 10/02/2018 Existing

Synchro 11 Report Page 2

Annroach	FR	NB	SB
Арргоаст	LD	ND	OD
HCM Control Delay, s	9.6	2.5	0
HCM LOS	Α		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	1438	-	819	-	-	
HCM Lane V/C Ratio	0.025	-	0.043	-	-	
HCM Control Delay (s)	7.6	0	9.6	-	-	
HCM Lane LOS	Α	Α	Α	-	-	
HCM 95th %tile Q(veh)	0.1	-	0.1	-	-	

lata and attack						
Intersection	4.0					
Int Delay, s/veh	4.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			વ	ĵ,	
Traffic Vol, veh/h	52	5	7	10	14	47
Future Vol. veh/h	52	5	7	10	14	47
Conflicting Peds, #/hr		0	1	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	- 100	None
Storage Length	0	-	-	-		-
Veh in Median Storage			_	0	0	
Grade, %	0, # 0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
	10	2	2	2	7	4
Heavy Vehicles, %	55	5	7	11	15	50
Mvmt Flow	55	5	- /	11	15	50
Major/Minor	Minor2		Major1	1	Major2	
Conflicting Flow All	66	41	66	0		0
Stage 1	41	-	-	-	_	-
Stage 2	25	-		-	-	-
Critical Hdwy	6.5	6.22	4.12	-		_
Critical Hdwy Stg 1	5.5	0.22	7.12	-		
Critical Hdwy Stg 2	5.5		_	-	_	_
Follow-up Hdwy	3.59		2.218			
Pot Cap-1 Maneuver	920	1030	1536	-		_
Stage 1	961	1000	1000			
Stage 2	977					
Platoon blocked. %	911	-	-			
	914	1029	1525	-	_	
Mov Cap-1 Maneuver			1535	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	955	-	-	-	-	-
Stage 2	976	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			3		0	
HCM LOS	9.2 A		3		0	
I IOWI LOG	A					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1535	-	923	-	-
HCM Lane V/C Ratio		0.005	-	0.066		
HCM Control Delay (s	()	7.4	0	9.2	-	-
HCM Lane LOS	,	A	A	A		
Lano Loo		\sim	/1	/1	_	_

0 - 0.2 - -

HCM 95th %tile Q(veh)

Appendix D

Signal Warrants

Jack Dalgity Stree @ Paterson Street 2027 Future Background

Justification #7

		Minimum F	Requirement	Minimum R	Requirement		Compliance		
Justification	Description	1 Lane	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elitile 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	69	10%	10%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	39	23%	10%	INO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	43	6%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	22	30%	6%	No

- Streets (average nour)

 Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percatage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. T-intersection factor corrected, applies only to 18

Jack Dalgity Stree @ Paterson Street 2032 Future Background

		Minimum R	equirement	Minimum Requirement			Compliance			
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	80	11%	110/	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	39	23%	11%	INO	
2. Dolov to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	53	7%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	22	30%	7%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. -Intersection factor corrected, applies only to 18

Jack Dalgity Stree/Access #1 @ Paterson Street 2027 Future Total

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or More Lanes		Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elitile 70	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	118	16%	16%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	52	31%	10%	NO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	66	9%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	26	35%	9%	No
Notes 1. Refer to OTM Book 12, pg 92, 2. Lowest section percentage go 3. Average hourly volumes estim 4. T-intersection factor corrected	verns justification nated from peak hour volumes, AHV = PM/2 or (AM -	· PM) / 4, includin	g amplifcation fac	tors					

Jack Dalgity Stree/Access #1 @ Paterson Street 2032 Future Total

		Minimum R	equirement	Minimum R	Requirement		Compliance			
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	i	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	128	18%	18%	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	52	31%	16%	INO	
2. Dolov to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	76	11%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	26	35%	11%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. -Intersection factor corrected, applies only to 18

Access #2 @ Appleton Side Road 2027 Future Total

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	197	27%	27%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	73	43%	2770	INO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	148	21%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	41	55%	21%	No

- Streets (average nour)

 Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012

 2. Lowest section percentage governs justification

 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors

 4. T-intersection factor corrected, applies only to 18

Access #2 @ Appleton Side Road 2032 Future Total

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	i
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	205	28%	28%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	73	43%	28%	NO
3. Dolay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	156	22%		
2. Delay to Cross B	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	41	55%	22%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. -Intersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2027 Future Background

Justification #7

		Minimum R	equirement	Minimum Requirement			Compliance		1
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	559	78%	48%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	81	48%	40%	NO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	477	66%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	48	63%	63%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volume estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. Finitersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2032 Future Background

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	598	83%	50%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	86	50%	50%	NO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	513	71%		
Z. Delay to cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	50	67%	67%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. T-intersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2027 Future Total

Justification #7

		Minimum F	Requirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	642	89%	72%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	122	72%	72%	INO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	520	72%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	63	83%	72%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volume estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. Finitersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2032 Future Total

		Minimum R	equirement	Minimum R	equirement		Compliance			
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elitile 76		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	681	95%	74%	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	127	74%	7470	NO	
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	555	77%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	65	87%	77%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. T-intersection factor corrected, applies only to 18

Appendix E

2027 Future Background Synchro and Sidra Worksheets

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2027 AM (Site

Folder: General)]

Site Category: (None) Roundabout

Mov ID		INP VOLU [Total veh/h	MES	DEM/	AND	Deg.								
	Apple		HV] %	[Total veh/h	WS HV] %	Satn v/c		Level of Service	95% BA QUE [Veh. veh	CK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South:			70	venin	70	V/C	Sec		ven	111		_		KIII/I
1	L2	47	2.0	52	2.0	0.109	8.9	LOSA	0.4	3.0	0.43	0.61	0.43	48.4
2	T1	7	2.0	8	2.0	0.109	3.5	LOSA	0.4	3.0	0.43	0.61	0.43	47.8
3	R2	44	2.0	48	2.0	0.109	3.8	LOSA	0.4	3.0	0.43	0.61	0.43	46.4
Appro	ach	98	2.0	108	2.0	0.109	6.2	LOS A	0.4	3.0	0.43	0.61	0.43	47.4
East: 0	CR 49													
4	L2	33	2.0	36	2.0	0.119	7.7	LOS A	0.7	4.7	0.21	0.35	0.21	49.
5	T1	292	2.0	321	2.0	0.119	2.3	LOS A	0.7	4.7	0.20	0.30	0.20	49.
6	R2	15	2.0	16	2.0	0.119	2.7	LOS A	0.7	4.7	0.20	0.26	0.20	48.
Appro	ach	340	2.0	374	2.0	0.119	2.8	LOS A	0.7	4.7	0.20	0.30	0.20	49.
North:	Rams	ay												
7	L2	26	2.0	29	2.0	0.059	8.8	LOS A	0.2	1.5	0.40	0.56	0.40	48.
8	T1	11	2.0	12	2.0	0.059	3.3	LOSA	0.2	1.5	0.40	0.56	0.40	47.
9	R2	17	2.0	19	2.0	0.059	3.6	LOS A	0.2	1.5	0.40	0.56	0.40	46.
Appro	ach	54	2.0	59	2.0	0.059	6.0	LOS A	0.2	1.5	0.40	0.56	0.40	47.
West:	Ottawa	а												
10	L2	8	2.0	9	2.0	0.149	7.8	LOS A	0.8	5.7	0.22	0.29	0.22	50.
11	T1	375	2.0	412	2.0	0.149	2.3	LOS A	8.0	5.8	0.21	0.28	0.21	49.
12	R2	40	2.0	44	2.0	0.149	2.7	LOS A	8.0	5.8	0.21	0.28	0.21	48.
Appro	ach	423	2.0	465	2.0	0.149	2.4	LOS A	8.0	5.8	0.21	0.28	0.21	49.
All Vel	nicles	915	2.0	1005	2.0	0.149	3.2	LOSA	8.0	5.8	0.24	0.34	0.24	49.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab)

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: PLUS / IPC | Processed: November 23, 2022 - 235.59 PM | Project: C:Users/AndrewHarte/CGH TRANSPORTATION/CGH Working - Documents/Projects/2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \ 2022-142 Sidra 2022-1142 Sidra 2022-1

MOVEMENT SUMMARY

♥ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2027 PM (Site Folder: General)]

Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %				[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ı: Apple	eton												
1	L2	72	2.0	74	2.0	0.126	8.9	LOS A	0.5	3.5	0.42	0.62	0.42	48.0
2	T1	12	2.0	12	2.0	0.126	3.4	LOS A	0.5	3.5	0.42	0.62	0.42	47.5
3	R2	38	2.0	39	2.0	0.126	3.7	LOS A	0.5	3.5	0.42	0.62	0.42	46.1
Appro	oach	122	2.0	126	2.0	0.126	6.7	LOSA	0.5	3.5	0.42	0.62	0.42	47.4
East:	CR 49													
4	L2	60	2.0	62	2.0	0.238	8.0	LOS A	1.4	10.3	0.30	0.36	0.30	49.5
5	T1	598	2.0	616	2.0	0.238	2.4	LOS A	1.5	10.5	0.28	0.32	0.28	49.3
6	R2	46	2.0	47	2.0	0.238	2.9	LOS A	1.5	10.5	0.28	0.29	0.28	48.0
Appro	oach	704	2.0	726	2.0	0.238	2.9	LOSA	1.5	10.5	0.28	0.32	0.28	49.2
North	: Rams	say												
7	L2	19	2.0	20	2.0	0.062	9.6	LOS A	0.2	1.7	0.51	0.63	0.51	48.3
8	T1	15	2.0	15	2.0	0.062	4.2	LOS A	0.2	1.7	0.51	0.63	0.51	47.7
9	R2	17	2.0	18	2.0	0.062	4.4	LOS A	0.2	1.7	0.51	0.63	0.51	46.3
Appro	oach	51	2.0	53	2.0	0.062	6.3	LOS A	0.2	1.7	0.51	0.63	0.51	47.5
West	Ottaw	a												
10	L2	17	2.0	18	2.0	0.149	7.9	LOS A	0.8	5.6	0.25	0.31	0.25	50.0
11	T1	358	2.0	369	2.0	0.149	2.4	LOS A	0.8	5.7	0.24	0.30	0.24	49.5
12	R2	67	2.0	69	2.0	0.149	2.8	LOS A	0.8	5.7	0.23	0.30	0.23	48.1
Appro	oach	442	2.0	456	2.0	0.149	2.7	LOS A	0.8	5.7	0.24	0.30	0.24	49.3
All Ve	hicles	1319	2.0	1360	2.0	0.238	3.3	LOSA	1.5	10.5	0.29	0.35	0.29	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2:35:59 PM

Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \2022-142 Sidra 2022-11-22.sip9

2: Paterson Street/Menzie Street & Ottawa Street

2027 Future Background AM Peak Hour

	*	-	*	1	—	*	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	↑	7		4			4	
Traffic Volume (vph)	1	548	70	54	399	3	83	9	83	2	14	6
Future Volume (vph)	1	548	70	54	399	3	83	9	83	2	14	6
Satd. Flow (prot)	0	1658	0	1626	1664	1483	0	1528	0	0	1660	0
Flt Permitted				0.404				0.838			0.972	
Satd. Flow (perm)	0	1658	0	691	1664	1439	0	1300	0	0	1620	0
Satd. Flow (RTOR)		12				36		51			6	
Lane Group Flow (vph)	0	665	0	58	429	3	0	188	0	0	23	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		26.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	58.0	58.0		58.0	58.0	58.0	32.0	32.0		32.0	32.0	
Total Split (%)	64.4%	64.4%		64.4%	64.4%	64.4%	35.6%	35.6%		35.6%	35.6%	
Maximum Green (s)	51.7	51.7		51.7	51.7	51.7	26.0	26.0		26.0	26.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0	13.0	18.0	18.0		18.0	18.0	
Pedestrian Calls (#/hr)	1	1		4	4	4	2	2		10	10	
Act Effct Green (s)		55.3		55.3	55.3	55.3		15.2			15.2	
Actuated g/C Ratio		0.67		0.67	0.67	0.67		0.18			0.18	
v/c Ratio		0.60		0.13	0.39	0.00		0.67			0.08	
Control Delay		11.6		7.4	8.5	0.0		33.9			20.9	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		11.6		7.4	8.5	0.0		33.9			20.9	
LOS		В		Α	Α	Α		С			С	
Approach Delay		11.6			8.3			33.9			20.9	
Approach LOS		В			Α			С			С	
Queue Length 50th (m)		45.6		2.7	24.2	0.0		18.9			2.1	
Queue Length 95th (m)		111.3		10.0	59.1	0.0		38.4			7.6	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		1110		461	1110	972		444			514	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.60		0.13	0.39	0.00		0.42			0.04	
Intersection Summary												

Scenario 1 Mill Valley Estates 11:59 pm 11/17/2022 2027 Future Background

Synchro 11 Report Page 1 Lanes, Volumes, Timings
2: Paterson Street/Menzie Street & Ottawa Street

2027 Future Background AM Peak Hour

Cycle Length: 90
Actuated Cycle Length: 82.8
Natural Cycle: 70
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.67
Intersection Signal Delay: 13.6
Intersection Capacity Utilization 78.6%
Analysis Period (min) 15

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Intersection						
Int Delay, s/veh	2.6					
						000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ર્ન	∱•	
Traffic Vol, veh/h	14		26	61	64	15
Future Vol, veh/h	14	20	26	61	64	15
Conflicting Peds, #/hr			0	0	0	0
Sign Control	Stop		Free	Free	Free	Free
RT Channelized	-		-	None	-	None
Storage Length	0		-	-	-	-
Veh in Median Storag			-	0	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	86		86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mvmt Flow	16	23	30	71	74	17
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	214		91	0	-	0
Stage 1	83		-	-		-
Stage 2	131	- 1	- 1		- 1	
Critical Hdwy	6.61	6.22	4.14			
	5.61	0.22	4.14			
Critical Hdwy Stg 1	5.61		-		-	
Critical Hdwy Stg 2		-	- 000	-	-	
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver		976	1491	-	-	-
Stage 1	894	-	-	-	-	-
Stage 2	850	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		976	1491	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	875	-	-	-	-	-
Stage 2	850	-	-	-	-	-
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s			2.2		0	
HCM LOS	А					
Minor Lane/Major Mv	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1491	-		-	-
HCM Lane V/C Ratio		0.02		0.046		
HCM Control Delay (s	s)	7.5	0	9.4	-	-
HCM Lane LOS	-/	A	A	Α	-	-
		/ (71			

Internation						
Intersection	4.4					
Int Delay, s/veh	4.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	ĵ.	
Traffic Vol, veh/h	37	11	10	20	25	17
Future Vol, veh/h	37	11	10	20	25	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		-	-	-
Veh in Median Storage	-	-	-	0	0	-
Grade, %	0			0	0	
Peak Hour Factor	71	71	71	71	71	71
Heavy Vehicles, %	3	45	30	2	6	6
Mymt Flow	52	15	14	28	35	24
IVIVIIIL I IUW	32	10	14	20	33	24
	Minor2	1	Major1	N	Major2	
Conflicting Flow All	103	47	59	0	-	0
Stage 1	47	-	-	-	-	-
Stage 2	56	-	-	-	-	-
Critical Hdwy	6.43	6.65	4.4	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.705	2.47	-		-
Pot Cap-1 Maneuver	893	913	1384	-		_
Stage 1	973	-	-			
Stage 2	964		-			
Platoon blocked, %	304	-				
Mov Cap-1 Maneuver	884	913	1384			
	884	913	1304			-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	963	-	-	-	-	-
Stage 2	964	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		2.5		0	
HCM LOS	Α.4		2.0		U	
TIOW LOO						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1384	-	890	-	-
HCM Lane V/C Ratio		0.01	-	0.076	-	-
HCM Control Delay (s)		7.6	0	9.4	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0.2	-	
0001 /0000 @(1011	,			0.2		

0.1 - 0.1 - -

HCM 95th %tile Q(veh)

2: Paterson Street/Menzie Street & Ottawa Street

2027 Future Background PM Peak Hour

	•	\rightarrow	*	1	-	•	1	†	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4		ሻ	1	7		4			4	
Traffic Volume (vph)	4	549	51	65	798	11	93	8	69	7	3	
Future Volume (vph)	4	549	51	65	798	11	93	8	69	7	3	
Satd. Flow (prot)	0	1703	0	1658	1728	1483	0	1595	0	0	1608	
Flt Permitted		0.996		0.290				0.821			0.884	
Satd. Flow (perm)	0	1696	0	506	1728	1438	0	1335	0	0	1455	
Satd. Flow (RTOR)		7				36		38			5	
Lane Group Flow (vph)	0	636	0	68	840	12	0	179	0	0	15	
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		1	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		11.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	47.7	47.7		11.3	59.0	59.0	31.0	31.0		31.0	31.0	
Total Split (%)	53.0%	53.0%		12.6%	65.6%	65.6%	34.4%	34.4%		34.4%	34.4%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	Max	Max		None	Max	Max	None	None		Max	Max	
Act Effct Green (s)		43.7		52.7	52.7	52.7		25.0			25.0	
Actuated g/C Ratio		0.49		0.59	0.59	0.59		0.28			0.28	
v/c Ratio		0.77		0.19	0.83	0.01		0.45			0.04	
Control Delay		27.8		9.4	24.2	0.5		25.2			19.6	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		27.8		9.4	24.2	0.5		25.2			19.6	
LOS		С		Α	С	Α		С			В	
Approach Delay		27.8			22.8			25.2			19.6	
Approach LOS		С			С			С			В	
Queue Length 50th (m)		90.4		4.7	108.1	0.0		19.8			1.3	
Queue Length 95th (m)		#150.6		10.1	#174.7	0.5		38.7			5.8	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		826		360	1011	856		398			407	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.77		0.19	0.83	0.01		0.45			0.04	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Natural Cycle: 80												
Control Type: Semi Act-Unco	oord											
Maximum v/c Ratio: 0.83												

Scenario 1 Mill Valley Estates 11:59 pm 10/02/2018 2027 Future Background

Synchro 11 Report Page 1 Lanes, Volumes, Timings 2: Paterson Street/Menzie Street & Ottawa Street 2027 Future Background PM Peak Hour

Intersection Signal Delay: 24.8 Intersection Capacity Utilization 82.9% Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Scenario 1 Mill Valley Estates 11:59 pm 10/02/2018 2027 Future Background

Synchro 11 Report Page 2

Interception						
Intersection	2					
Int Delay, s/veh	2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ની	ĥ	
Traffic Vol, veh/h	13	21	35	80	116	27
Future Vol, veh/h	13	21	35	80	116	27
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mymt Flow	14	22	36	83	121	28
			- 00	- 00		
	Minor2		Major1		Major2	
Conflicting Flow All	290	135	149	0	-	0
Stage 1	135	-	-	-	-	-
Stage 2	155	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.345	2.227	-	-	-
Pot Cap-1 Maneuver	701	906	1426	-	-	-
Stage 1	891	-	-	-	-	-
Stage 2	873	-	-	_	-	-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	683	906	1426	-	-	-
Mov Cap-2 Maneuver	683	-			-	
Stage 1	868	_	-	-	-	
Stage 2	873			-		
Stage 2	0/3					
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		2.3		0	
HCM LOS	Α					
Mineral and Main 14		ND	NDT	EDL -4	ODT	ODE
Minor Lane/Major Mvn	III	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1426	-	805	-	-
HCM Lane V/C Ratio		0.026		0.044	-	-
HCM Control Delay (s))	7.6	0	9.7	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh	1)	0.1	-	0.1	-	-

Intersection						
Intersection	3.7					
Int Delay, s/veh	3./					
	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ર્ન	٦	
Traffic Vol, veh/h	52	5	7	22	23	47
Future Vol, veh/h	52	5	7	22	23	47
Conflicting Peds, #/hr	0	0	1	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	10	2	2	2	7	4
Mymt Flow	55	5	7	23	24	50
Major/Minor Mi	200		Majart	Λ.	Anian)	
	nor2		Major1		//ajor2	
Conflicting Flow All	87	50	75	0	-	0
Stage 1	50	-	-	-		-
Stage 2	37	-	-	-	-	-
Critical Hdwy	6.5	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.5	-	-	-	-	-
Critical Hdwy Stg 2	5.5	-	-	-	-	-
Follow-up Hdwy	3.59	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	895	1018	1524	-	-	-
Stage 1	952	-	-	-	-	-
Stage 2	965	-	-	-	-	-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	889	1017	1523	_		_
Mov Cap-2 Maneuver	889	-	1020		-	
Stage 1	946		-			_
Stage 2	964		-			
Stage 2	304					
Approach	EB		NB		SB	
HCM Control Delay, s	9.3		1.8		0	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBL	NIRT	EBLn1	SBT	SBR
			IND I		ODI	SDR
Capacity (veh/h)		1523		899 0.067		-
HCM Control Dolov (a)		0.005			-	-
HCM Control Delay (s)		7.4	0	9.3	-	-
HCM Lane LOS		A	Α	A	-	-
HCM 95th %tile Q(veh)		0	-	0.2	-	-

Appendix F

2032 Future Background Synchro and Sidra Worksheets

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2032 AM (Site

Folder: General)]

Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM/ FLO' [Total	WS HV]	Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Apple	ton												
1	L2	51	2.0	56	2.0	0.120	9.0	LOS A	0.5	3.3	0.44	0.62	0.44	48.3
2	T1	7	2.0	8	2.0	0.120	3.6	LOS A	0.5	3.3	0.44	0.62	0.44	47.
3	R2	48	2.0	53	2.0	0.120	3.9	LOS A	0.5	3.3	0.44	0.62	0.44	46.4
Appr	oach	106	2.0	116	2.0	0.120	6.3	LOS A	0.5	3.3	0.44	0.62	0.44	47.4
East:	CR 49													
4	L2	36	2.0	40	2.0	0.129	7.8	LOS A	0.7	5.1	0.22	0.35	0.22	49.
5	T1	315	2.0	346	2.0	0.129	2.3	LOS A	0.7	5.2	0.21	0.30	0.21	49.
6	R2	15	2.0	16	2.0	0.129	2.7	LOS A	0.7	5.2	0.21	0.27	0.21	48.
Appr	oach	366	2.0	402	2.0	0.129	2.8	LOS A	0.7	5.2	0.22	0.30	0.22	49.
North	: Rams	ay												
7	L2	26	2.0	29	2.0	0.060	8.8	LOS A	0.2	1.6	0.41	0.57	0.41	48.4
8	T1	11	2.0	12	2.0	0.060	3.4	LOS A	0.2	1.6	0.41	0.57	0.41	47.8
9	R2	17	2.0	19	2.0	0.060	3.7	LOS A	0.2	1.6	0.41	0.57	0.41	46.4
Appr	oach	54	2.0	59	2.0	0.060	6.1	LOSA	0.2	1.6	0.41	0.57	0.41	47.6
West	: Ottawa	а												
10	L2	8	2.0	9	2.0	0.161	7.8	LOS A	0.9	6.2	0.23	0.29	0.23	50.
11	T1	404	2.0	444	2.0	0.161	2.3	LOS A	0.9	6.3	0.22	0.28	0.22	49.
12	R2	43	2.0	47	2.0	0.161	2.7	LOS A	0.9	6.3	0.21	0.28	0.21	48.
Appr	oach	455	2.0	500	2.0	0.161	2.5	LOSA	0.9	6.3	0.22	0.28	0.22	49.
All Ve	ehicles	981	2.0	1078	2.0	0.161	3.2	LOSA	0.9	6.3	0.25	0.34	0.25	49.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab)

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2-350.0 PM | Project: C:Users/AndrewHarte/CGH TRANSPORTATION/CGH Working - Documents/Projects/2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \ 2022-142 Sidra 2022-1122 sigr9

MOVEMENT SUMMARY

♥ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2032 PM (Site

Folder: General)]

Site Category: (None) Roundabout

Mov	Т	INP	UT	DEM	ANID	D	A	Level of	050/ D/	CK OF	D	Effective	A	Aver.
ID		VOLU		FLO		Deg. Satn		Service	95% B <i>F</i> QUI		Prop. Que	Stop	Aver. No.	Speed
		[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate	Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Apple	ton												
1	L2	78	2.0	80	2.0	0.137	8.9	LOS A	0.5	3.9	0.44	0.63	0.44	48.0
2	T1	12	2.0	12	2.0	0.137	3.5	LOS A	0.5	3.9	0.44	0.63	0.44	47.4
3	R2	41	2.0	42	2.0	0.137	3.8	LOS A	0.5	3.9	0.44	0.63	0.44	46.1
Appro	ach	131	2.0	135	2.0	0.137	6.8	LOS A	0.5	3.9	0.44	0.63	0.44	47.3
East:	CR 49													
4	L2	65	2.0	67	2.0	0.257	8.0	LOS A	1.6	11.3	0.31	0.36	0.31	49.5
5	T1	644	2.0	664	2.0	0.257	2.5	LOS A	1.6	11.6	0.30	0.32	0.30	49.2
6	R2	46	2.0	47	2.0	0.257	2.9	LOS A	1.6	11.6	0.29	0.29	0.29	47.9
Appro	oach	755	2.0	778	2.0	0.257	3.0	LOS A	1.6	11.6	0.30	0.32	0.30	49.1
North	: Rams	ay												
7	L2	19	2.0	20	2.0	0.063	9.8	LOS A	0.2	1.7	0.53	0.64	0.53	48.2
8	T1	15	2.0	15	2.0	0.063	4.3	LOS A	0.2	1.7	0.53	0.64	0.53	47.6
9	R2	17	2.0	18	2.0	0.063	4.6	LOS A	0.2	1.7	0.53	0.64	0.53	46.3
Appro	oach	51	2.0	53	2.0	0.063	6.4	LOS A	0.2	1.7	0.53	0.64	0.53	47.4
West:	Ottawa	a												
10	L2	17	2.0	18	2.0	0.160	7.9	LOS A	0.9	6.2	0.26	0.32	0.26	50.0
11	T1	385	2.0	397	2.0	0.160	2.4	LOS A	0.9	6.3	0.25	0.31	0.25	49.5
12	R2	72	2.0	74	2.0	0.160	2.8	LOS A	0.9	6.3	0.24	0.30	0.24	48.1
Appro	ach	474	2.0	489	2.0	0.160	2.7	LOS A	0.9	6.3	0.25	0.31	0.25	49.3
All Ve	hicles	1411	2.0	1455	2.0	0.257	3.4	LOS A	1.6	11.6	0.30	0.36	0.30	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2:36:00 PM

Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \2022-142 Sidra 2022-11-22.sip9

2032 Future Background a Street AM Peak Hour

2: Paterson Street/Menzie Street & Ottawa Street

	•	-	*	1	—	•	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	†	7		4			4	
Traffic Volume (vph)	1	591	75	58	429	3	89	9	89	2	14	6
Future Volume (vph)	1	591	75	58	429	3	89	9	89	2	14	6
Satd. Flow (prot)	0	1658	0	1626	1664	1483	0	1528	0	0	1660	0
Flt Permitted				0.379				0.837			0.971	
Satd. Flow (perm)	0	1658	0	648	1664	1439	0	1298	0	0	1618	0
Satd. Flow (RTOR)		12				36		51			6	
Lane Group Flow (vph)	0	717	0	62	461	3	0	202	0	0	23	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		26.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	58.0	58.0		58.0	58.0	58.0	32.0	32.0		32.0	32.0	
Total Split (%)	64.4%	64.4%		64.4%	64.4%	64.4%	35.6%	35.6%		35.6%	35.6%	
Maximum Green (s)	51.7	51.7		51.7	51.7	51.7	26.0	26.0		26.0	26.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	2.0	0.0		0.0	0.0	0.0	2.1	0.0		2.1	0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag		0.0		0.0	0.0	0.0		0.0			0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0	13.0	18.0	18.0		18.0	18.0	
Pedestrian Calls (#/hr)	10.0	10.0		4	4	4	2	2		10.0	10.0	
Act Effct Green (s)		54.9		54.9	54.9	54.9		15.8		10	15.8	
Actuated g/C Ratio		0.66		0.66	0.66	0.66		0.19			0.19	
v/c Ratio		0.65		0.00	0.42	0.00		0.70			0.13	
Control Delay		13.1		7.9	9.1	0.00		35.8			20.7	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		13.1		7.9	9.1	0.0		35.8			20.7	
LOS		13.1 B		7.9 A	9.1 A	Ο.0		33.6 D			20.7 C	
		13.1		А	8.9	А		35.8			20.7	
Approach Delay		13.1 B			0.9 A			33.0 D			20.7 C	
Approach LOS		54.6		2.0	28.2	0.0						
Queue Length 50th (m)				3.0		0.0		21.2			2.1	
Queue Length 95th (m)		127.2 113.0		10.8	64.8 108.0	0.0		42.0 153.2			7.6 106.0	
Internal Link Dist (m)		113.0			108.0	20.0		153.2			106.0	
Turn Bay Length (m)		4400		400	4400	30.0		440			540	
Base Capacity (vph)		1100		428	1100	963		442			512	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.65		0.14	0.42	0.00		0.46			0.04	
Intersection Summary												

Scenario 1 Mill Valley Estates 11:59 pm 11/17/2022 2032 Future Background

Synchro 11 Report Page 1 Lanes, Volumes, Timings
2: Paterson Street/Menzie Street & Ottawa Street

2032 Future Background AM Peak Hour

Cycle Length: 90

Actuated Cycle Length: 83

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 14.9

Intersection Capacity Utilization 82.0%

Analysis Period (min) 15

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Intersection	_					
Int Delay, s/veh	2.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	Þ	
Traffic Vol, veh/h	14	20	26	69	70	15
Future Vol, veh/h	14	20	26	69	70	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mvmt Flow	16	23	30	80	81	17
Main // Minne	M:		M-:4		4-:0	
	Minor2		Major1		Major2	_
Conflicting Flow All	230	90	98	0	-	0
Stage 1	90	-	-	-	-	-
Stage 2	140	-	-	-	-	-
Critical Hdwy	6.61	6.22	4.14	-	-	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689			-	-	-
Pot Cap-1 Maneuver	718	968	1483	-	-	-
Stage 1	888	-	-	-	-	-
Stage 2	842	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	703	968	1483	-	-	-
Mov Cap-2 Maneuver	703	-	-	-	-	-
Stage 1	869	-	-	-	-	-
Stage 2	842	-	-	-		-
Olago L	0.2					
Approach	EB		NB		SB	
HCM Control Delay, s	9.5		2		0	
HCM LOS	Α					
Miner Lone/Major Muss		NBL	NDT	EBLn1	SBT	SBR
Minor Lane/Major Mvm	IL					
Capacity (veh/h)		1483	-	838	-	-
HCM Lane V/C Ratio		0.02		0.047	-	-
HCM Control Delay (s)		7.5	0	9.5	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	0.1	-	-

Interception						
Intersection	2.0					
Int Delay, s/veh	3.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	ĵ.	
Traffic Vol, veh/h	37	11	10	32	34	17
Future Vol, veh/h	37	11	10	32	34	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	
Peak Hour Factor	71	71	71	71	71	71
Heavy Vehicles, %	3	45	30	2	6	6
Mymt Flow	52	15	14	45	48	24
	UZ	10		-10	-10	2.7
	Minor2		Major1		Major2	
Conflicting Flow All	133	60	72	0	-	0
Stage 1	60	-	-	-	-	-
Stage 2	73	-	-	-	-	-
Critical Hdwy	6.43	6.65	4.4	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.705	2.47	-	-	-
Pot Cap-1 Maneuver	858	897	1368	-	-	-
Stage 1	960	-		-		
Stage 2	947					
Platoon blocked, %	541	_				
Mov Cap-1 Maneuver	849	897	1368			
•	849	091	1300			
Mov Cap-2 Maneuver		-		-	-	-
Stage 1	950	-	-	-		
Stage 2	947	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.5		1.8		0	
HCM LOS	A		1.0		-	
	А					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1368	-	860	-	-
HCM Lane V/C Ratio		0.01	-	0.079	-	-
HCM Control Delay (s)		7.7	0	9.5	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0.3	-	-
	,					

2: Paterson Street/Menzie Street & Ottawa Street

2032 Future Background PM Peak Hour

		\rightarrow	*	•	_	_	1	T		-	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4		1	↑	7		4			4	
Traffic Volume (vph)	4	592	55	70	860	11	100	8	74	7	3	
Future Volume (vph)	4	592	55	70	860	11	100	8	74	7	3	
Satd. Flow (prot)	0	1703	0	1658	1728	1483	0	1595	0	0	1608	
Flt Permitted		0.995		0.269				0.821			0.881	
Satd. Flow (perm)	0	1695	0	469	1728	1438	0	1335	0	0	1450	
Satd. Flow (RTOR)		7				36		38			5	
Lane Group Flow (vph)	0	685	0	74	905	12	0	191	0	0	15	
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		1	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		11.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	47.7	47.7		11.3	59.0	59.0	31.0	31.0		31.0	31.0	
Total Split (%)	53.0%	53.0%		12.6%	65.6%	65.6%	34.4%	34.4%		34.4%	34.4%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	Max	Max		None	Max	Max	None	None		Max	Max	
Act Effct Green (s)		43.7		52.7	52.7	52.7		25.0			25.0	
Actuated g/C Ratio		0.49		0.59	0.59	0.59		0.28			0.28	
v/c Ratio		0.83		0.22	0.90	0.01		0.48			0.04	
Control Delay		31.6		9.7	29.8	0.5		26.2			19.6	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		31.6		9.7	29.8	0.5		26.2			19.6	
LOS		С		A	С	A		С			В	
Approach Delay		31.6		- / \	28.0	- '		26.2			19.6	
Approach LOS		C			C			C			В	
Queue Length 50th (m)		102.3		5.1	125.8	0.0		21.7			1.3	
Queue Length 95th (m)		#170.4		10.7	#214.4	0.5		41.9			5.8	
Internal Link Dist (m)		113.0		10.7	108.0	0.0		153.2			106.0	
Turn Bay Length (m)		110.0			100.0	30.0		100.2			100.0	
Base Capacity (vph)		825		340	1011	856		398			406	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.83		0.22	0.90	0.01		0.48			0.04	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Natural Cycle: 90												
Control Type: Semi Act-Und	coord											
Maximum v/c Ratio: 0.90												

Scenario 1 Mill Valley Estates 11:59 pm 10/02/2018 2032 Future Background

Synchro 11 Report Page 1 Lanes, Volumes, Timings 2: Paterson Street/Menzie Street & Ottawa Street 2032 Future Background PM Peak Hour

Intersection Signal Delay: 29.0 Intersection Capacity Utilization 87.3% Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Scenario 1 Mill Valley Estates 11:59 pm 10/02/2018 2032 Future Background

Synchro 11 Report Page 2

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	٦	
Traffic Vol, veh/h	13	21	35	89	126	27
Future Vol, veh/h	13	21	35	89	126	27
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mymt Flow	14	22	36	93	131	28
			- 00	00	101	20
	Minor2		Major1	N	Major2	
Conflicting Flow All	310	145	159	0	-	0
Stage 1	145	-	-	-	-	-
Stage 2	165	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-
Follow-up Hdwy		3.345	2.227	-	-	-
Pot Cap-1 Maneuver	682	894	1414			-
Stage 1	882	-	-			
Stage 2	864			_		_
Platoon blocked, %	004				- 1	
Mov Cap-1 Maneuver	664	894	1414			
Mov Cap-1 Maneuver	664	094	14 14	-	-	
Stage 1	858	-	-	-	-	-
			-	-	-	-
Stage 2	864	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.8		2.1		0	
HCM LOS	3.0 A		۷.۱		0	
TIOM LOO	^					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1414	-	789	-	-
HCM Lane V/C Ratio		0.026	-	0.045	-	-
HCM Control Delay (s)		7.6	0	9.8	-	-
HCM Lane LOS		A	A	A		
HCM 95th %tile Q(veh	١	0.1	-	0.1		
TIOM JOHN JOHN Q VOIL	,	0.1		0.1		

Interception						
Intersection	2.2					
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	ĵ.	
Traffic Vol, veh/h	52	5	7	34	32	47
Future Vol, veh/h	52	5	7	34	32	47
Conflicting Peds, #/hr	0	0	1	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	10	2	2	2	7	4
Mymt Flow	55	5	7	36	34	50
	-00			- 00	01	- 00
		_		_		
	inor2		Major1		/lajor2	
Conflicting Flow All	110	60	85	0	-	0
Stage 1	60	-	-	-	-	-
Stage 2	50	-	-	-	-	-
Critical Hdwy	6.5	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.5	-	-	-	-	-
Critical Hdwy Stg 2	5.5	-	-	-	-	-
Follow-up Hdwy	3.59	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	868	1005	1512	-	-	-
Stage 1	943	-	-	-	-	-
Stage 2	952	-	-		-	
Platoon blocked, %	002			-		-
Mov Cap-1 Maneuver	862	1004	1511			
Mov Cap-1 Maneuver	862	1004	1311	- 1	- 1	
Stage 1	937					
Stage 2	951				- 1	
Staye 2	201	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		1.3		0	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBL	NDT	EBLn1	SBT	SBR
					901	OBR
Capacity (veh/h)		1511	-	873	-	-
HCM Lane V/C Ratio		0.005		0.069	-	-
HCM Control Delay (s)		7.4	0	9.4	-	-
HCM Lane LOS		A	Α	A	-	-
HCM 95th %tile Q(veh)		0		0.2	-	_

Appendix G

2027 Future Total Synchro and Sidra Worksheets

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2027 AM (Site

Folder: General)]

Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Apple	ton												
1	L2	83	2.0	91	2.0	0.219	9.2	LOSA	0.9	6.4	0.46	0.64	0.46	48.5
2	T1	7	2.0	8	2.0	0.219	3.7	LOS A	0.9	6.4	0.46	0.64	0.46	47.9
3	R2	106	2.0	116	2.0	0.219	4.0	LOS A	0.9	6.4	0.46	0.64	0.46	46.5
Appr	oach	196	2.0	215	2.0	0.219	6.2	LOSA	0.9	6.4	0.46	0.64	0.46	47.4
East	CR 49													
4	L2	15	2.0	16	2.0	0.133	7.9	LOS A	0.7	5.3	0.28	0.32	0.28	49.9
5	T1	295	2.0	324	2.0	0.133	2.4	LOS A	8.0	5.4	0.27	0.31	0.27	49.4
6	R2	56	2.0	62	2.0	0.133	2.8	LOS A	0.8	5.4	0.26	0.30	0.26	48.0
Appr	oach	366	2.0	402	2.0	0.133	2.7	LOSA	8.0	5.4	0.27	0.31	0.27	49.2
North	n: Rams	ay												
7	L2	26	2.0	29	2.0	0.060	8.9	LOS A	0.2	1.6	0.41	0.57	0.41	48.4
8	T1	11	2.0	12	2.0	0.060	3.4	LOS A	0.2	1.6	0.41	0.57	0.41	47.8
9	R2	17	2.0	19	2.0	0.060	3.7	LOS A	0.2	1.6	0.41	0.57	0.41	46.4
Appr	oach	54	2.0	59	2.0	0.060	6.1	LOSA	0.2	1.6	0.41	0.57	0.41	47.6
West	: Ottaw	а												
10	L2	8	2.0	9	2.0	0.153	7.7	LOS A	0.9	6.1	0.19	0.28	0.19	50.4
11	T1	384	2.0	422	2.0	0.153	2.2	LOS A	0.9	6.1	0.19	0.28	0.19	49.8
12	R2	53	2.0	58	2.0	0.153	2.7	LOS A	0.9	6.1	0.18	0.27	0.18	48.4
Appr	oach	445	2.0	489	2.0	0.153	2.4	LOSA	0.9	6.1	0.19	0.28	0.19	49.7
All V	ehicles	1061	2.0	1166	2.0	0.219	3.4	LOSA	0.9	6.4	0.28	0.37	0.28	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2-350.0 PM | Project: C:Users/AndrewHarte/CGH TRANSPORTATION/CGH Working - Documents/Projects/2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \ 2022-142 Sidra 2022-1122 sigr9

MOVEMENT SUMMARY

♥ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2027 PM (Site

Folder: General)]

Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Apple	ton												
1	L2	96	2.0	99	2.0	0.196	9.0	LOS A	8.0	5.9	0.46	0.63	0.46	48.2
2	T1	12	2.0	12	2.0	0.196	3.5	LOS A	8.0	5.9	0.46	0.63	0.46	47.6
3	R2	80	2.0	82	2.0	0.196	3.8	LOS A	8.0	5.9	0.46	0.63	0.46	46.3
Appro	oach	188	2.0	194	2.0	0.196	6.4	LOS A	8.0	5.9	0.46	0.63	0.46	47.3
East:	CR 49													
4	L2	127	2.0	131	2.0	0.270	8.1	LOS A	1.7	12.1	0.34	0.43	0.34	48.9
5	T1	608	2.0	627	2.0	0.270	2.6	LOS A	1.8	12.5	0.33	0.35	0.33	48.9
6	R2	46	2.0	47	2.0	0.270	3.0	LOS A	1.8	12.5	0.32	0.30	0.32	47.8
Appro	ach	781	2.0	805	2.0	0.270	3.5	LOS A	1.8	12.5	0.33	0.36	0.33	48.9
North	: Rams	ay												
7	L2	19	2.0	20	2.0	0.065	9.9	LOS A	0.2	1.8	0.55	0.65	0.55	48.2
8	T1	15	2.0	15	2.0	0.065	4.4	LOS A	0.2	1.8	0.55	0.65	0.55	47.6
9	R2	17	2.0	18	2.0	0.065	4.7	LOS A	0.2	1.8	0.55	0.65	0.55	46.2
Appro	ach	51	2.0	53	2.0	0.065	6.5	LOSA	0.2	1.8	0.55	0.65	0.55	47.3
West	Ottaw	а												
10	L2	17	2.0	18	2.0	0.173	8.2	LOS A	1.0	6.9	0.35	0.35	0.35	49.6
11	T1	364	2.0	375	2.0	0.173	2.7	LOS A	1.0	7.1	0.34	0.34	0.34	49.2
12	R2	105	2.0	108	2.0	0.173	3.0	LOS A	1.0	7.1	0.33	0.34	0.33	47.8
Appro	ach	486	2.0	501	2.0	0.173	2.9	LOS A	1.0	7.1	0.34	0.34	0.34	48.9
All Ve	hicles	1506	2.0	1553	2.0	0.270	3.8	LOSA	1.8	12.5	0.36	0.40	0.36	48.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2:36:01 PM

Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \2022-142 Sidra 2022-11-22.sip9

2: Paterson Street/Menzie Street & Ottawa Street

2027 Future Total AM Peak Hour

	•	-	*	•	-	•	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	1	7		4			4	
Traffic Volume (vph)	1	561	86	57	435	3	128	9	92	2	14	6
Future Volume (vph)	1	561	86	57	435	3	128	9	92	2	14	6
Satd. Flow (prot)	0	1651	0	1626	1664	1483	0	1535	0	0	1660	0
Flt Permitted				0.378				0.814			0.972	
Satd. Flow (perm)	0	1651	0	647	1664	1439	0	1271	0	0	1620	0
Satd. Flow (RTOR)		14				36		38			6	
Lane Group Flow (vph)	0	696	0	61	468	3	0	247	0	0	23	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		26.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	58.0	58.0		58.0	58.0	58.0	32.0	32.0		32.0	32.0	
Total Split (%)	64.4%	64.4%		64.4%	64.4%	64.4%	35.6%	35.6%		35.6%	35.6%	
Maximum Green (s)	51.7	51.7		51.7	51.7	51.7	26.0	26.0		26.0	26.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0	13.0	18.0	18.0		18.0	18.0	
Pedestrian Calls (#/hr)	1	1		4	4	4	2	2		10	10	
Act Effct Green (s)		53.2		53.2	53.2	53.2		18.7			18.7	
Actuated g/C Ratio		0.63		0.63	0.63	0.63		0.22			0.22	
v/c Ratio		0.66		0.15	0.45	0.00		0.79			0.06	
Control Delay		14.9		9.1	10.7	0.0		44.3			19.8	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		14.9		9.1	10.7	0.0		44.3			19.8	
LOS		В		Α	В	Α		D			В	
Approach Delay		14.9			10.5			44.3			19.8	
Approach LOS		В			В			D			В	
Queue Length 50th (m)		62.6		3.6	34.8	0.0		31.2			2.1	
Queue Length 95th (m)		123.9		10.9	68.2	0.0		56.7			7.6	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		1048		409	1051	922		419			505	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.66		0.15	0.45	0.00		0.59			0.05	
Intersection Summary												

Scenario 1 Mill Valley Estates 11:59 pm 11/17/2022 2027 Future Total

Synchro 11 Report Page 1 Lanes, Volumes, Timings
2: Paterson Street/Menzie Street & Ottawa Street

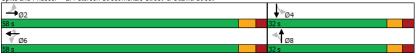
2027 Future Total AM Peak Hour

Cycle Length: 90

Actuated Cycle Length: 84.2

Natural Cycle: 70

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.79

Intersection Signal Delay: 18.2

Intersection Capacity Utilization 83.4%

Analysis Period (min) 15

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	ß	
Traffic Vol, veh/h	14	20	26	159	100	15
Future Vol, veh/h	14	20	26	159	100	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mvmt Flow	16	23	30	185	116	17

Major/Minor	Minor2		Major1	Ma	ajor2	
Conflicting Flow All	370	125	133	0	-	0
Stage 1	125	-	-	-	-	-
Stage 2	245	-	-	-	-	-
Critical Hdwy	6.61	6.22	4.14	-	-	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689	3.318	2.236	-	-	-
Pot Cap-1 Maneuver	594	926	1440	-	-	-
Stage 1	856	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	580	926	1440	-	-	-
Mov Cap-2 Maneuver	580	-	-	-	-	-
Stage 1	836	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s			1.1		0	
HCM LOS	В					

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	1440	-	743	-	-
HCM Lane V/C Ratio	0.021	-	0.053	-	-
HCM Control Delay (s)	7.6	0	10.1	-	-
HCM Lane LOS	Α	Α	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.2	-	-

Internaction												
Intersection Int Delay, s/veh	5.9											
init Delay, s/ven	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	37	0	11	9	0	53	10	20	3	20	25	17
Future Vol, veh/h	37	0	11	9	0	53	10	20	3	20	25	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	71	93	71	93	93	93	71	71	93	93	71	71
Heavy Vehicles, %	3	2	45	2	2	2	30	2	2	2	6	6
Mvmt Flow	52	0	15	10	0	57	14	28	3	22	35	24
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	177	150	47	157	161	30	59	0	0	31	0	0
Stage 1	91	91	-	58	58	-	-	-	-	-	-	-
Stage 2	86	59		99	103							
Critical Hdwy	7.13	6.52	6.65	7.12	6.52	6.22	4.4			4.12		
Critical Hdwy Stg 1	6.13	5.52	0.00	6.12	5.52	0.22	7.7			7.12		
Critical Hdwy Stg 2	6.13	5.52		6.12	5.52		-					
Follow-up Hdwy	3.527	4.018		3.518	4.018	3.318	2.47			2.218		
Pot Cap-1 Maneuver	783	742	913	809	731	1044	1384			1582		
Stage 1	914	820	- 310	954	847	-	-			- 1002		
Stage 2	919	846	_	907	810	_	_	_	_	_	_	
Platoon blocked, %	010	0.10		001	010							-
Mov Cap-1 Maneuver	727	724	913	781	713	1044	1384	_	-	1582	-	_
Mov Cap-2 Maneuver	727	724	-	781	713	-	-			-	-	
Stage 1	905	809	-	944	839	_	_	-	_	-	_	_
Stage 2	860	838	-	879	799		-			-		-
Jgu _												
A	ED			MD			ND			OD		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.2			8.9			2.4			1.9		
HCM LOS	В			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1384	-	-	763	995	1582	-	-			
HCM Lane V/C Ratio		0.01	-	-	0.089	0.067	0.014	-				
HCM Control Delay (s)		7.6	0	-	10.2	8.9	7.3	0	-			
HCM Lane LOS		Α	Α	-	В	Α	Α	Α	-			

0 - - 0.3 0.2 0 - -

HCM 95th %tile Q(veh)

PM Peak Hour

Intersection						
Int Delay, s/veh	3.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LDIT	1102	4	1	OBIT
Traffic Vol, veh/h	98	18	7	87	84	36
Future Vol. veh/h	98	18	7	87	84	36
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-		-	None
Storage Length	0	-		-		-
Veh in Median Storage	e. # 0	-	-	0	0	-
Grade, %	0			0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	105	19	8	94	90	39
	100			0.	00	00
	Minor2		Major1		Major2	
Conflicting Flow All	220	110	129	0	-	0
Stage 1	110	-	-	-	-	-
Stage 2	110	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	768	943	1457	-	-	-
Stage 1	915	-	-	-	-	-
Stage 2	915	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	763	943	1457	-	-	-
Mov Cap-2 Maneuver	763	-	-	-	-	-
Stage 1	910	-	-	-	-	-
Stage 2	915			-		-
Oldgo L	0.0					
			ND		00	
Approach	EB		NB		SB	
HCM Control Delay, s	10.4		0.6		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1457	-		-	-
HCM Lane V/C Ratio		0.005		0.159		
HCM Control Delay (s)	ı	7.5	0	10.4		_
HCM Lane LOS		Α.	A	В		
HCM 95th %tile Q(veh)	0	- '-	0.6		_
TIOIN JOHN JUHO Q(VOI)	1	U		0.0		

	*	-	*	•	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4		ች		7		4			4	
Traffic Volume (vph)	4	587	99	75	822	11	123	8	75	7	3	ļ
Future Volume (vph)	4	587	99	75	822	11	123	8	75	7	3	
Satd. Flow (prot)	0	1685	0	1658	1728	1483	0	1603	0	0	1608	(
Flt Permitted		0.996		0.286				0.808			0.874	
Satd. Flow (perm)	0	1678	0	499	1728	1438	0	1323	0	0	1438	(
Satd. Flow (RTOR)		12				36		32			5	
Lane Group Flow (vph)	0	726	0	79	865	12	0	216	0	0	15	(
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		1	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		11.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	47.7	47.7		11.3	59.0	59.0	31.0	31.0		31.0	31.0	
Total Split (%)	53.0%	53.0%		12.6%	65.6%	65.6%	34.4%	34.4%		34.4%	34.4%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	Max	Max		None	Max	Max	None	None		None	None	
Act Effct Green (s)		45.7		54.8	54.8	54.8		16.9			16.9	
Actuated g/C Ratio		0.54		0.65	0.65	0.65		0.20			0.20	
v/c Ratio		0.79		0.20	0.77	0.01		0.74			0.05	
Control Delay		26.0		7.9	17.9	0.5		41.6			20.6	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		26.0		7.9	17.9	0.5		41.6			20.6	
LOS		С		Α	В	Α		D			С	
Approach Delay		26.0			16.8			41.6			20.6	
Approach LOS		С			В			D			С	
Queue Length 50th (m)		91.0		4.0	84.1	0.0		26.9			1.3	
Queue Length 95th (m)		#187.2		11.3	#199.1	0.5		49.4			5.8	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		918		394	1126	950		416			431	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.79		0.20	0.77	0.01		0.52			0.03	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 84.	1											
Natural Cycle: 90												
Control Type: Semi Act-Und	coord											
Maximum v/a Patia: 0.70												

Maximum v/c Ratio: 0.79

2027 Future Total 2: Paterson Street/Menzie Street & Ottawa Street

Intersection Signal Delay: 23.2 Intersection Capacity Utilization 88.4% Intersection LOS: C ICU Level of Service E Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

ÿ1	<u></u> ♣ _{Ø2}	Ø4	
11.3 s	47.7 s	31 s	
₩ Ø6		↑ ø8	
59 s		31 s	

HCM 2010 TWSC 3: Appleton Side Road (Country Road 17) & Industrial Drive 2027 Future Total PM Peak Hour

Interception						
Intersection Int Delay, s/veh	1.4					
iiii Delay, S/VeII						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	₽	
Traffic Vol, veh/h	13	21	35	147	222	27
Future Vol, veh/h	13	21	35	147	222	27
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mymt Flow	14	22	36	153	231	28
Major/Minor I	Minor2		Major1	N	Major2	
	470		259	0		0
Conflicting Flow All		245	259	U	-	-
Stage 1	245		-	-	-	
Stage 2	225	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.345		-	-	-
Pot Cap-1 Maneuver	552	786	1300	-	-	-
Stage 1	796	-	-	-	-	-
Stage 2	812	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	535	786	1300	-	-	-
Mov Cap-2 Maneuver	535	-	-	-		-
Stage 1	772		-	-		
Stage 2	812					
Stage 2	012					
Approach	EB		NB		SB	
HCM Control Delay, s	10.7		1.5		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1300	-	666	ODI	ODIC
HCM Lane V/C Ratio		0.028		0.053	- 1	- :
HCM Control Delay (s)		7.8	0	10.7	-	-
HCM Lane LOS		7.0 A	A	10.7 B		
				0.2		-
HCM 95th %tile Q(veh)		0.1	-	0.2	-	-

PM Peak Hour

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			4			4	
Traffic Vol, veh/h	52	0	5	6	0	36	7	22	10	58	23	47
Future Vol, veh/h	52	0	5	6	0	36	7	22	10	58	23	47
Conflicting Peds, #/hr	0	0	0	0	0	0	1	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	93	94	93	93	93	94	94	93	93	94	94
Heavy Vehicles, %	10	2	2	2	2	2	2	2	2	2	7	4
Mvmt Flow	55	0	5	6	0	39	7	23	11	62	24	50
Major/Minor N	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	236	222	50	219	242	29	75	0	0	34	0	0
Stage 1	174	174	-	43	43	-	-	-	-	-	-	-
Stage 2	62	48	-	176	199		-	-	-	-	-	-
Critical Hdwy	7.2	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.2	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.2	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.59	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	702	677	1018	737	660	1046	1524	-	-	1578	-	-
Stage 1	809	755	-	971	859	-	-	-	-	-	-	-
Stage 2	929	855	-	826	736	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	652	645	1017	708	629	1046	1523	-	-	1578	-	-
Mov Cap-2 Maneuver	652	645	-	708	629	-	-	-	-	-	-	-
Stage 1	804	723	-	966	855	-	-	-	-	-	-	-
Stage 2	890	851	-	788	705	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.9			8.9			1.3			3.4		
HCM LOS	В			Α.9			1.0			0.4		
		ND:	NDT	NDC	EDI	MDI 1	ODI	007	000			
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		1523	-	-	673	979	1578	-	-			
HCM Lane V/C Ratio		0.005	-	-		0.046	0.04	-	-			
HCM Control Delay (s)		7.4	0	-	10.9	8.9	7.4	0	-			
HCM Lane LOS		A	Α	-	В	A	Α	Α	-			
HCM 95th %tile O(veh)		0	-	-	0.3	0.1	0.1	-	-			

Intersection						
Intersection	0.0					
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			લી	ĵ.	
Traffic Vol, veh/h	67	12	19	115	137	106
Future Vol. veh/h	67	12	19	115	137	106
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop	None	-	None	-	None
Storage Length	0	-		-		-
Veh in Median Storage	-					
		-	-	0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	72	13	20	124	147	114
Major/Minor	Minor2		Major1	ı	Major2	
Conflicting Flow All	368	204	261	0	viajoiz -	0
Stage 1	204	204	201	U	-	-
				-		
Stage 2	164	-	- 4.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	632	837	1303	-	-	-
Stage 1	830	-	-	-	-	-
Stage 2	865	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	622	837	1303	-	-	
Mov Cap-2 Maneuver	622	-	-	-		-
Stage 1	817					
Stage 2	865				- 0	- :
Staye 2	000					
Approach	EB		NB		SB	
HCM Control Delay, s	11.4		1.1		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1303	-	647	-	-
HCM Lane V/C Ratio		0.016	-	0.131	-	-
HCM Control Delay (s)		7.8	0	11.4	-	-
HCM Lane LOS		Α	Α	В	-	-

0 - - 0.3 0.1 0.1

HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

0 - 0.5 - -

HCM 95th %tile Q(veh)

HCM 2010 TWSC

5: Appleton Side Road (Country Road 17) & Access #2

Appendix H

2032 Future Total Synchro and Sidra Worksheets

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2032 AM (Site

Folder: General)]

Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Apple	ton												
1	L2	87	2.0	96	2.0	0.233	9.3	LOS A	1.0	7.0	0.49	0.66	0.49	48.4
2	T1	7	2.0	8	2.0	0.233	3.8	LOS A	1.0	7.0	0.49	0.66	0.49	47.8
3	R2	110	2.0	121	2.0	0.233	4.1	LOS A	1.0	7.0	0.49	0.66	0.49	46.4
Appr	oach	204	2.0	224	2.0	0.233	6.3	LOSA	1.0	7.0	0.49	0.66	0.49	47.3
East:	CR 49													
4	L2	59	2.0	65	2.0	0.143	7.9	LOS A	8.0	5.8	0.29	0.41	0.29	49.2
5	T1	318	2.0	349	2.0	0.143	2.4	LOS A	8.0	6.0	0.28	0.33	0.28	49.2
6	R2	15	2.0	16	2.0	0.143	2.8	LOS A	0.8	6.0	0.27	0.28	0.27	48.0
Appr	oach	392	2.0	431	2.0	0.143	3.3	LOSA	8.0	6.0	0.28	0.34	0.28	49.1
North	n: Rams	ay												
7	L2	26	2.0	29	2.0	0.062	9.0	LOS A	0.2	1.7	0.44	0.59	0.44	48.3
8	T1	11	2.0	12	2.0	0.062	3.6	LOS A	0.2	1.7	0.44	0.59	0.44	47.7
9	R2	17	2.0	19	2.0	0.062	3.9	LOS A	0.2	1.7	0.44	0.59	0.44	46.4
Appr	oach	54	2.0	59	2.0	0.062	6.3	LOSA	0.2	1.7	0.44	0.59	0.44	47.6
West	: Ottawa	а												
10	L2	8	2.0	9	2.0	0.172	7.9	LOS A	0.9	6.6	0.27	0.30	0.27	50.1
11	T1	413	2.0	454	2.0	0.172	2.4	LOS A	0.9	6.7	0.26	0.30	0.26	49.5
12	R2	56	2.0	62	2.0	0.172	2.8	LOS A	0.9	6.7	0.25	0.29	0.25	48.1
Appr	oach	477	2.0	524	2.0	0.172	2.6	LOSA	0.9	6.7	0.26	0.30	0.26	49.4
All Ve	ehicles	1127	2.0	1238	2.0	0.233	3.7	LOSA	1.0	7.0	0.32	0.39	0.32	48.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2-350.1 PM | Project: C:Users/AndrewHarte/CGH TRANSPORTATION/CGH Working - Documents/Projects/2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \ 2022-142 Sidra 2022-1122 sigr9

MOVEMENT SUMMARY

♥ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2032 PM (Site Folder: General)]

Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfori	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Apple													
1	L2	102	2.0	105	2.0	0.209	9.1	LOS A	0.9	6.4	0.47	0.65	0.47	48.1
2	T1	12	2.0	12	2.0	0.209	3.6	LOS A	0.9	6.4	0.47	0.65	0.47	47.5
3	R2	83	2.0	86	2.0	0.209	3.9	LOS A	0.9	6.4	0.47	0.65	0.47	46.2
Appro	oach	197	2.0	203	2.0	0.209	6.6	LOS A	0.9	6.4	0.47	0.65	0.47	47.3
East:	CR 49													
4	L2	132	2.0	136	2.0	0.290	8.1	LOS A	1.9	13.3	0.36	0.43	0.36	48.9
5	T1	654	2.0	674	2.0	0.290	2.6	LOS A	1.9	13.7	0.35	0.35	0.35	48.9
6	R2	46	2.0	47	2.0	0.290	3.0	LOS A	1.9	13.7	0.34	0.30	0.34	47.8
Appro	oach	832	2.0	858	2.0	0.290	3.5	LOSA	1.9	13.7	0.35	0.36	0.35	48.8
North	: Rams	ay												
7	L2	19	2.0	20	2.0	0.067	10.0	LOS B	0.3	1.8	0.56	0.67	0.56	48.1
8	T1	15	2.0	15	2.0	0.067	4.6	LOS A	0.3	1.8	0.56	0.67	0.56	47.5
9	R2	17	2.0	18	2.0	0.067	4.8	LOS A	0.3	1.8	0.56	0.67	0.56	46.2
Appro	oach	51	2.0	53	2.0	0.067	6.7	LOSA	0.3	1.8	0.56	0.67	0.56	47.3
West	Ottaw	а												
10	L2	17	2.0	18	2.0	0.186	8.2	LOS A	1.0	7.5	0.36	0.35	0.36	49.6
11	T1	391	2.0	403	2.0	0.186	2.7	LOS A	1.1	7.7	0.35	0.35	0.35	49.1
12	R2	110	2.0	113	2.0	0.186	3.1	LOS A	1.1	7.7	0.34	0.34	0.34	47.8
Appro	oach	518	2.0	534	2.0	0.186	3.0	LOSA	1.1	7.7	0.35	0.35	0.35	48.8
All Ve	hicles	1598	2.0	1647	2.0	0.290	3.8	LOSA	1.9	13.7	0.37	0.40	0.37	48.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2:36:02 PM

Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \2022-142 Sidra 2022-11-22.sip9

2: Paterson Street/Menzie Street & Ottawa Street

2032 Future Total AM Peak Hour

	•	-	*	1	—	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ች	1	7		4			44	
Traffic Volume (vph)	1	604	91	61	465	3	134	9	98	2	14	6
Future Volume (vph)	1	604	91	61	465	3	134	9	98	2	14	6
Satd. Flow (prot)	0	1651	0	1626	1664	1483	0	1533	0	0	1660	0
Flt Permitted				0.353				0.815			0.972	
Satd. Flow (perm)	0	1651	0	604	1664	1439	0	1272	0	0	1620	0
Satd. Flow (RTOR)		14				36		38			6	
Lane Group Flow (vph)	0	748	0	66	500	3	0	259	0	0	23	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		26.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	58.0	58.0		58.0	58.0	58.0	32.0	32.0		32.0	32.0	
Total Split (%)	64.4%	64.4%		64.4%	64.4%	64.4%	35.6%	35.6%		35.6%	35.6%	
Maximum Green (s)	51.7	51.7		51.7	51.7	51.7	26.0	26.0		26.0	26.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0	13.0	18.0	18.0		18.0	18.0	
Pedestrian Calls (#/hr)	1	1		4	4	4	2	2		10	10	
Act Effct Green (s)		53.0		53.0	53.0	53.0		19.3			19.3	
Actuated g/C Ratio		0.63		0.63	0.63	0.63		0.23			0.23	
v/c Ratio		0.72		0.18	0.48	0.00		0.81			0.06	
Control Delay		17.1		9.8	11.5	0.0		45.8			19.7	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		17.1		9.8	11.5	0.0		45.8			19.7	
LOS		В		Α	В	Α		D			В	
Approach Delay		17.1			11.2			45.8			19.7	
Approach LOS		В			В			D			В	
Queue Length 50th (m)		74.3		4.1	39.8	0.0		33.4			2.1	
Queue Length 95th (m)		142.7		12.0	74.6	0.0		59.8			7.6	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		1038		377	1041	914		418			503	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.72		0.18	0.48	0.00		0.62			0.05	
Intersection Summary												

Scenario 1 Mill Valley Estates 11:59 pm 11/17/2022 2032 Future Total

Synchro 11 Report Page 1 Lanes, Volumes, Timings
2: Paterson Street/Menzie Street & Ottawa Street

2032 Future Total AM Peak Hour

Cycle Length: 90
Actuated Cycle Length: 84.6
Natural Cycle: 75
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.81
Intersection Signal Delay: 19.7
Intersection Capacity Utilization 86.8%
ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

Intersection						
Int Delay, s/veh	1.6					
		EDD	ND	NDT	ODT	ODE
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	00	00	4	♣	45
Traffic Vol, veh/h	14	20	26	167	106	15
Future Vol, veh/h	14	20	26	167	106	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mvmt Flow	16	23	30	194	123	17
Major/Minor	Minor2		Major1	, A	Major2	
		132			viajuiz -	0
Conflicting Flow All	386	132	140	0		0
Stage 1	132 254				-	
Stage 2		- 0.00	-	-	-	-
Critical Hdwy	6.61	6.22	4.14	-	-	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	582		1431	-	-	-
Stage 1	849	-	-	-	-	-
Stage 2	746	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	569	917	1431	-	-	-
Mov Cap-2 Maneuver	569	-	-	-	-	-
Stage 1	829	-	-	-	-	-
Stage 2	746	-	-	-	-	-
, and the second						
A	ED		ND		00	
Approach	EB		NB		SB	
HCM Control Delay, s	10.2		1		0	
HCM LOS	В					
Minor Lane/Major Mvm	ıt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1431	-	733	-	-
HCM Lane V/C Ratio		0.021		0.054		
HCM Control Delay (s)		7.6	0	10.2		
HCM Lane LOS		Α.	A	10.2 B		
HCM 95th %tile Q(veh)	١	0.1	A -	0.2		
How sour while Q(ven)		0.1	-	0.2	-	-

Intersection Int Delay, s/veh 5.4 Set EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBT SBT
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR
Movement EBL EBL EBR WBL WBT WBR NBL NBT NBL SBL SBL SBR Lane Configurations 1 4 <
Lane Configurations
Traffic Vol, veh/h 37 0 11 9 0 53 10 32 3 20 34 17 Future Vol, veh/h 37 0 11 9 0 53 10 32 3 20 34 17 Conflicting Peds, #/hr 0
Future Vol, veh/h 37 0 11 9 0 53 10 32 3 20 34 17 Conflicting Peds, #/hr 0<
Conflicting Peds, #hr 0
Sign Control Stop Stop Stop Stop Stop Stop Stop Free
RT Channelized - - None - - - -
Storage Length - 0 - -
Veh in Median Storage, # - 0 0 0 0 -
Peak Hour Factor 71 93 71 93 93 93 71 71 93 93 71 71
100000000000000000000000000000000000000
Mvmt Flow 52 0 15 10 0 57 14 45 3 22 48 24
Major/Minor Minor2 Minor1 Major1 Major2
Conflicting Flow All 207 180 60 187 191 47 72 0 0 48 0 0
Stage 1 104 104 - 75 75
Stage 2 103 76 - 112 116
Critical Hdwy 7.13 6.52 6.65 7.12 6.52 6.22 4.4 4.12
Critical Hdwy Stg 1 6.13 5.52 - 6.12 5.52
Critical Hdwy Stg 2 6.13 5.52 - 6.12 5.52
Follow-up Hdwy 3.527 4.018 3.705 3.518 4.018 3.318 2.47 2.218
Pot Cap-1 Maneuver 748 714 897 774 704 1022 1368 1559
Stage 1 899 809 - 934 833
Stage 2 900 832 - 893 800
Platoon blocked, %
Mov Cap-1 Maneuver 693 695 897 745 686 1022 1368 1559
Mov Cap-2 Maneuver 693 695 - 745 686
Stage 1 889 797 - 924 824
Stage 2 840 823 - 864 788
Approach EB WB NB SB
HCM Control Delay, s 10.4 9 1.7 1.7
HCM LOS B A
IIOWI LOG
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1368 731 970 1559
Capacity (veh/h) 1368 - - 731 970 1559 - - HCM Lane V/C Ratio 0.01 - - 0.092 0.069 0.014 - -
Capacity (veh/h) 1368 - - 731 970 1559 - - HCM Lane V/C Ratio 0.01 - - 0.092 0.069 0.014 - - HCM Control Delay (s) 7.7 0 - 10.4 9 7.3 0 -
Capacity (veh/h) 1368 - - 731 970 1559 - - HCM Lane V/C Ratio 0.01 - - 0.092 0.069 0.014 - -

3.7

98 18 7 95 90 36

0

EBL EBR NBL NBT SBT SBR

0 0 0

0 - - -

235 117 136

3.518 3.318 2.218

753 935 1448

5.42

5.42

908

907 EB

Stop Stop Free Free Free Free

- None - None - None

95 90

- - 0 0 -

0 0 93 93 93 93 93

19 8 102 97 39

0

SB

NBT EBLn1 SBT SBR

0 10.6 - -

- 0.6 - -

- -

- 772

- 0.162

A B

6.42 6.22 4.12 - - -

0

Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # 0

Traffic Vol, veh/h

Future Vol, veh/h

RT Channelized

Peak Hour Factor Heavy Vehicles, % Mvmt Flow

Conflicting Flow All

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2 Platoon blocked, % Mov Cap-1 Maneuver 748 Mov Cap-2 Maneuver Stage 1 Stage 2

HCM Control Delay, s 10.6

Minor Lane/Major Mvmt

Capacity (veh/h)

HCM Lane LOS

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM LOS

Follow-up Hdwy

Critical Hdwy Critical Hdwy Stg 1

Stage 1 Stage 2

Storage Length

Sign Control

Grade, %

	۶	-	\searrow	•	←	*	1	1	1	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations		4		ሻ	1	7		4			4	
Traffic Volume (vph)	4	630	103	80	884	11	130	8	80	7	3	
Future Volume (vph)	4	630	103	80	884	11	130	8	80	7	3	
Satd. Flow (prot)	0	1685	0	1658	1728	1483	0	1601	0	0	1608	
Flt Permitted		0.996		0.265				0.808			0.874	
Satd. Flow (perm)	0	1679	0	462	1728	1438	0	1321	0	0	1438	
Satd. Flow (RTOR)		12				36		32			5	
Lane Group Flow (vph)	0	775	0	84	931	12	0	229	0	0	15	
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Detector Phase	2	2		1	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	26.3	26.3		11.3	26.3	26.3	31.0	31.0		31.0	31.0	
Total Split (s)	47.7	47.7		11.3	59.0	59.0	31.0	31.0		31.0	31.0	
Total Split (%)	53.0%	53.0%		12.6%	65.6%	65.6%	34.4%	34.4%		34.4%	34.4%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6	2.6	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	Max	Max		None	Max	Max	None	None		None	None	
Act Effct Green (s)		45.4		54.5	54.5	54.5		17.5			17.5	
Actuated q/C Ratio		0.54		0.65	0.65	0.65		0.21			0.21	
v/c Ratio		0.85		0.23	0.83	0.01		0.77			0.05	
Control Delay		30.7		8.4	21.8	0.5		43.3			20.5	
Queue Delay		0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay		30.7		8.4	21.8	0.5		43.3			20.5	
LOS		С		Α	С	Α		D			С	
Approach Delay		30.7			20.5			43.3			20.5	
Approach LOS		С			С			D			С	
Queue Length 50th (m)		105.1		4.5	102.1	0.0		29.2			1.3	
Queue Length 95th (m)		#207.2		11.8	#224.2	0.5		52.7			5.8	
Internal Link Dist (m)		113.0			108.0			153.2			106.0	
Turn Bay Length (m)						30.0						
Base Capacity (vph)		910		369	1116	941		415			430	
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn		0		0	0	0		0			0	
Storage Cap Reductn		0		0	0	0		0			0	
Reduced v/c Ratio		0.85		0.23	0.83	0.01		0.55			0.03	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 84.3	3											
Natural Cycle: 90												
Control Type: Semi Act-Und	coord											

Scenario 1 Mill Valley Estates 11:59 pm 11/17/2022 2032 Future Total

0.005

Lanes, Volumes, Timings

2: Paterson Street/Menzie Street & Ottawa Street

2032 Future Total PM Peak Hour

Page 2

2: Paterson Street/Menzie Street & Ottawa Street

Intersection Signal Delay: 26.9 Intersection Capacity Utilization 93.8% Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Paterson Street/Menzie Street & Ottawa Street

HCM 2010 TWSC 3: Appleton Side Road (Country Road 17) & Industrial Drive 2032 Future Total PM Peak Hour

-						
Interportion						
Intersection Int Delay, s/veh	1.3					
iiii Deiay, S/VeII	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ß	
Traffic Vol, veh/h	13	21	35	156	232	27
Future Vol, veh/h	13	21	35	156	232	27
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mvmt Flow	14	22	36	163	242	28
Major/Minor	Minor2		Majart		Anian)	
			Major1		Major2	
Conflicting Flow All	491	256	270	0	-	0
Stage 1	256	-	-	-	-	-
Stage 2	235	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.345		-	-	-
Pot Cap-1 Maneuver	537	775	1288	-	-	-
Stage 1	787	-	-	-	-	-
Stage 2	804	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	520	775	1288	-	-	-
Mov Cap-2 Maneuver	520	-	-	-	-	-
Stage 1	763	-	-	-	-	-
Stage 2	804	-	-	-	-	-
Anneach	EB		NB		SB	
Approach						
HCM Control Delay, s			1.4		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1288	-	653	-	-
HCM Lane V/C Ratio		0.028		0.054		
HCM Control Delay (s)	7.9	0	10.8	-	
HCM Lane LOS	,	Α.5	A	В		
HOMEST CALL		^ ^		0.0		

HCM 95th %tile Q(veh)

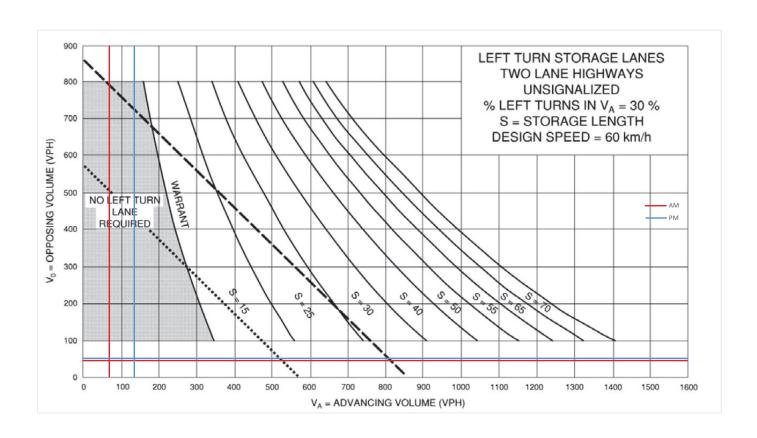
0.1 - 0.2

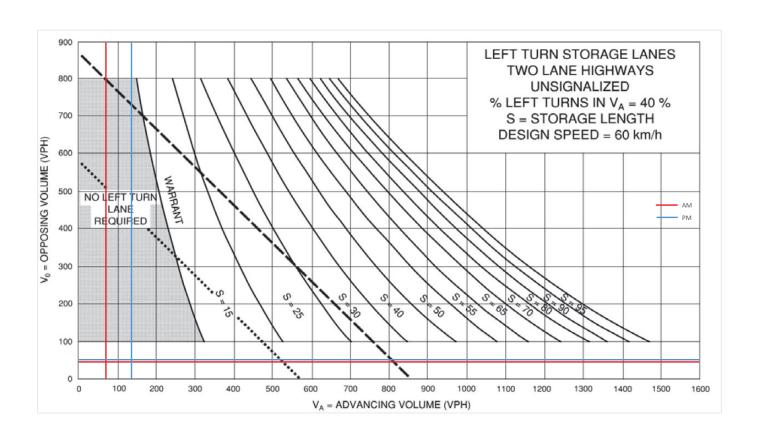
Intersection												
Int Delay, s/veh	5.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	52	0	5	6	0	36	7	34	10	58	32	47
Future Vol, veh/h	52	0	5	6	0	36	7	34	10	58	32	47
Conflicting Peds, #/hr	- 0	0	0	0	0	0	1	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storag	ge,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	93	94	93	93	93	94	94	93	93	94	94
Heavy Vehicles, %	10	2	2	2	2	2	2	2	2	2	7	4
Mvmt Flow	55	0	5	6	0	39	7	36	11	62	34	50
Major/Minor	Minor2			Minor1		1	//ajor1		1	Major2		
Conflicting Flow All	259	245	60	242	265	42	85	0	0	47	0	0
Stage 1	184	184	-	56	56	-	-	-	-	-	-	-
Stage 2	75	61	-	186	209	-	-	-	-	-	-	-
O. 11. 1.1.1.		0 =0		- 40	0 =0	0.00						

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	259	245	60	242	265	42	85	0	0	47	0	0	
Stage 1	184	184	-	56	56	-	-	-	-	-	-	-	
Stage 2	75	61	-	186	209	-	-	-	-	-	-	-	
Critical Hdwy	7.2	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.2	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.2	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.59	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-	
Pot Cap-1 Maneuver	678	657	1005	712	640	1029	1512	-	-	1560	-	-	
Stage 1	800	747	-	956	848	-	-	-	-	-	-	-	
Stage 2	915	844	-	816	729	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	629	625	1004	683	609	1029	1511	-	-	1560	-	-	
Mov Cap-2 Maneuver		625	-	683	609	-	-	-	-	-	-	-	
Stage 1	795	715	-	951	844	-	-	-	-	-	-	-	
Stage 2	876	840	-	778	698	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s				8.9			1			3.2			
HCM LOS	В			Α									

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1511	-	-	650	960	1560	-	-	
HCM Lane V/C Ratio	0.005	-	-	0.093	0.047	0.04	-	-	
HCM Control Delay (s)	7.4	0	-	11.1	8.9	7.4	0	-	
HCM Lane LOS	Α	Α	-	В	Α	Α	Α	-	
HCM 95th %tile Q(veh)	0	-	-	0.3	0.1	0.1	-	-	

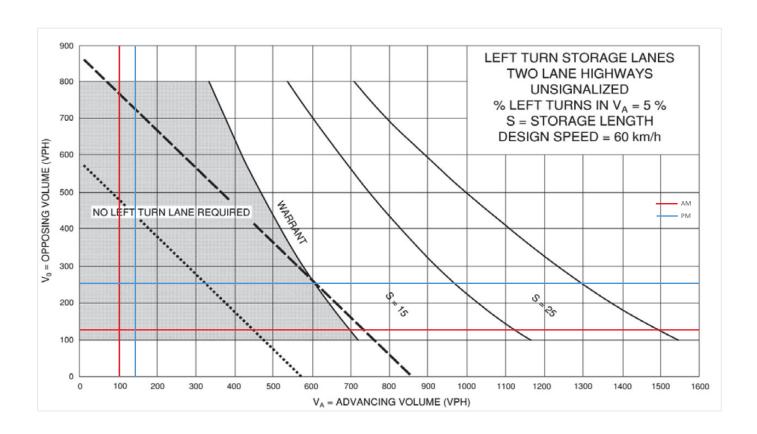
Intersection			_		_	
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ની	Þ	
Traffic Vol, veh/h	67	12	19	124	147	106
Future Vol, veh/h	67	12	19	124	147	106
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	72	13	20	133	158	114
Maria a/Minara	N.4: O		Madand		4-:0	
	Minor2		Major1		Major2	
Conflicting Flow All	388	215	272	0	-	0
Stage 1	215	-	-	-	-	-
Stage 2	173	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	616	825	1291	-	-	-
Stage 1	821	-	-	-	-	-
Stage 2	857	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	606	825	1291	-	-	-
Mov Cap-2 Maneuver	606	-	-	-	-	-
Stage 1	807	-	-	-	-	-
Stage 2	857	-		-		
Annyaaah	EB		NB		SB	
Approach			1			
HCM Control Delay, s	11.6		1		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1291	-	631	-	-
HCM Lane V/C Ratio		0.016	-	0.135		-
HCM Control Delay (s))	7.8	0	11.6	-	-
HCM Lane LOS		A	Α	В		
HCM 95th %tile O(yeh	Λ	٨		0.5		

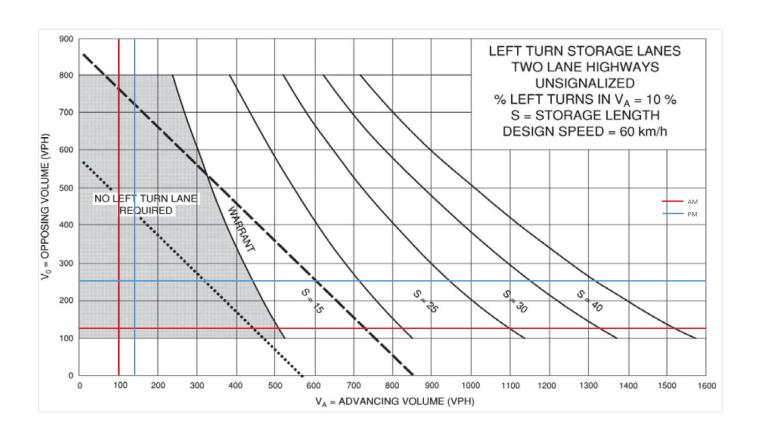

HCM 95th %tile Q(veh)

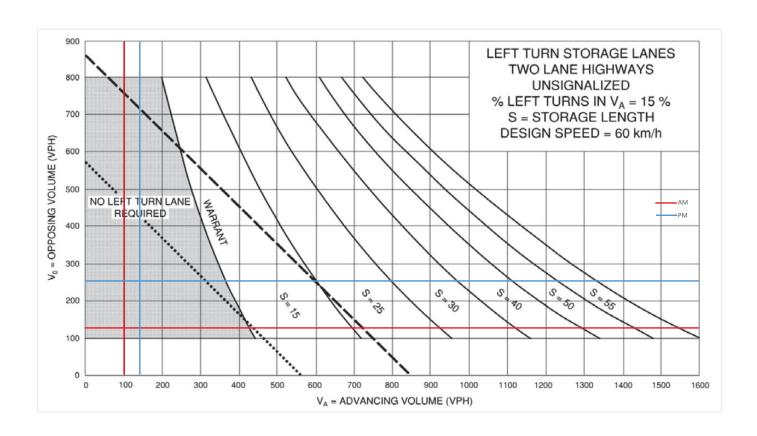

Appendix I

Turn Lane Warrants

Jack Dalgity Stree/Access #1 @ Paterson Street


Existing Design Speed 60 km/h	EBL AM	EBT 37	EBR 0	WBL	WBT 0	WBR 0	NBL 0	NBT	NBR 8	Yes SBL 0	SBT 0	SBR 16	%Le	eft Turn Volume A 0.0%	dvancing Volumo	e Opposing 18
	PM	52	0	5	0	0	0	7	10	0	0	14	47	0.0%	61	17
Future Background 2027 Design Speed 60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	Yes SBL	SBT	SBR	%Le	eft Turn Volume A	dvancing Volum	e Opposing
	AM	37	0	11	0	0	0	10	20	0	0	25	17	0.0%	42	30
	PM	52	0	5	0	0	0	7	22	0	0	23	47	0.0%	70	29
Future Background 2032 Design Speed										Yes						
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	961 6	eft Turn Volume A	dvancing Volum	e Opposing
Killyli	AM	37	0	11	0	0	0	10	32	0	0	34	17	0.0%	51	42
	PM	52	0	5	0	0	0	7	34	0	0	32	47	0.0%	79	41
Future Total 2027 Design Speed	FIVI	32	U	3	U	Ü	Ü	,	34	Yes	Ü	32	47	0.0%	75	41
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn Volume A	dvancing Volume	e Opposing
	AM	37	0	11	9	0	53	10	20	3	20	25	17	32.3%	62	33
	PM	52	0	5	6	0	36	7	22	10	58	23	47	45.3%	128	39
Future Total 2032 Design Speed										Yes						
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn Volume A	dvancing Volume	e Opposing
	AM	37	0	11	9	0	53	10	32	3	20	34	17	28.2%	71	45
	PM	52	0	5	6	0	36	7	34	10	58	32	47	42.3%	137	51





Access #2 @ Appleton Side Road

Future Total 2027 Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9	%Left Turn	Volume Advancing	Volume Opposing
	AM	98	0	18	0	0	0	7	87	0	0	84	36	7.4%	94	120
	PM	67	0	12	0	0	0	19	115	0	0	137	106	14.2%	134	243
Future Total 2032																
Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9	%Left Turn	Volume Advancing	Volume Opposing
	AM	98	0	18	0	0	0	7	95	0	0	90	36	6.9%	102	126
	PM	67	0	12	0	0	0	19	124	0	0	147	106	13.3%	143	253

