

Consulting Engineers

March 1, 2022

File: PE1114-LET.03

154 Colonnade Road South Ottawa, Ontario Canada, K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

Southwell Homes Ltd.

195 Julie Anne Crescent Carleton Place, Ontario K7C 4M5 Geotechnical Engineering Environmental Engineering Hydrogeology Geological Engineering Materials Testing Building Science

Attention: Mr. John Richard Southwell

www.patersongroup.ca

Subject: Environmental Action Plan

Supplemental Groundwater Sampling Program

116-122 Old Mill Lane Appleton, Ontario

Dear Sir,

As per the Environmental Action Plan (Report No. PE1114-MEMO.13, dated November 14, 2017) Paterson Group (Paterson) carried out a Supplemental Groundwater Sampling Program at the aforementioned site. The purpose of the sampling program was to confirm the groundwater quality at the subject property and update the findings of the March and June 2018 groundwater sampling events, as per comments provided by Stantec Consulting Ltd. on May 10, 2018. The findings of the supplemental groundwater sampling program are summarized in the following report.

Background Information

The subject property is located at the western end of Old Mill Lane, south of the Mississippi River, in Appleton, Ontario. The site currently consists of vacant, undeveloped land, whereas the surrounding lands consist of vacant land or provincially significant wetlands, with some residential land to the east and south. The subject site and surrounding properties are serviced with private potable wells and septic systems.

An environmental remediation program was carried out for the subject property during the interim of April 2007 through October 2010, and two (2) records of site condition (RSCs) were subsequently filed in the Environmental Site Registry (ESR): RSC #97711 covers the bulk of the subject site and RSC #102721 is for the 30 m buffer area along the banks of the Mississippi River. The environmental condition of the subject property at the time the RSCs were filed, was in accordance with the then applicable 2004 MOECC Table 1 and Table 2 standards.

Ottawa North Bay

Page 2

File: PE1114-LET.03

The current groundwater results at the subject property will be compared to both the 2004 MOECC Table 1 and Table 2 standards, as well as the contemporary MECP Table 6 and Table 8 standards, currently applicable to the property.

Subsurface Investigation (2018)

Prior to conducting the 2018 subsurface investigation, Paterson confirmed that the monitoring wells installed in 2008 (MW1-08, MW2-08, MW4-08 and MW5-08) were no longer present on the subject property. These wells were decommissioned during the site remediation program.

On March 16, 2018, two boreholes (BH1-18 and BH2-18) were placed on the subject property, within the former remedial area along the bank of the Mississippi River (area of former mill building). The boreholes were extended to depths of approximately 10.6 m and 7.1 m below existing grade, respectively. The boreholes were completed using a track-mounted CME 55 Power Auger drill rig, under the full time supervision of Paterson personnel. The boreholes were advanced into the bedrock, using a diamond coring system, and completed with monitoring well installations to access the groundwater table.

The borehole locations are identified on Drawing PE1114-8 – Test Hole Location Plan, appended to this report. The depths at which the split spoon and rock core samples were obtained from the test holes are shown as "SS" and "RC" on the Soil Profile and Test Data sheets, attached to this report.

Monitoring Well Installation

Groundwater monitoring wells were installed in BH1-18 and BH2-18, the locations of which can be seen on the attached Test Hole Location Plan. Typical monitoring well construction details are described below;

Slotted 32 mm diameter PVC screen at base of borehole
32 mm diameter PVC riser pipe from the top of the screen to ground surface.
No.3 Silica sand backfill within annular space around the screen.
Bentonite above sand pack to just below ground surface.
PVC riser.

Refer to the Soil Profile and Test Data sheets attached for the actual well construction details for BH1 and BH2.

Groundwater monitoring wells were developed upon installation using dedicated purging equipment (footvalves and dedicated polytubing). A minimum of three well volumes were removed from the monitoring wells or until the monitoring well was dry.

Page 3

File: PE1114-LET.03

Subsurface Profile

Fill material from ground surface to depths of approximately 7.0 m and 1.8 m below grade, was identified at BH1-18 and BH2-18, respectively. A thin layer of topsoil was identified at grade, at BH2-18. The fill material consisted of topsoil or silty sand mixed with gravel, cobbles, and boulders. This fill was a result of backfilling the remediation excavation with clean imported pit run from an aggregate pit. The specific details of the soil profile at the test hole locations are presented on the attached Soil Profile and Test Data sheets.

Groundwater Sampling (2018 & 2021)

Groundwater sampling protocols were followed using the MECP document entitled, "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Standing water was purged from each monitoring well prior to the recovery of the groundwater samples using dedicated sampling equipment. The samples were then stored in coolers to reduce possible analyte volatilization during their transportation.

Groundwater sampling was carried out at BH1-18 and BH2-18 on March 27 and June 7, 2018. These samples were submitted for analysis of BTEX and/or PHC (F₁-F₄) parameters.

A third groundwater sampling event was carried out more recently on December 7 and December 8, 2021, which also included the test wells installed as part of the hydrogeological investigation (TW1-TW3). These samples were submitted for analysis of BTEX, PAHs, metals, PCBs, as well as dioxins/furans parameters.

Field Measurement of Water Quality Parameters

Prior to groundwater sampling, water quality parameters (temperature, electrical conductivity, and pH) were measured in the field using a multi-parameter analyzer. The wells were purged prior to sampling until at least three well volumes had been removed or until the well was purged dry. The field parameter values were measured after each of the three well volumes were removed from the monitoring well, until field chemistry parameters had stabilized (within 10% of the two previous measured values). The groundwater quality pen was cleaned using distilled water after each time it was used to record groundwater parameters.

The field chemistry values measured during the June 2018 sampling event are summarized below in Table 1.

Page 4

File: PE1114-LET.03

Table 1 Field Measurement of Water Quality Parameters June 7, 2018						
Parameter	BH1-18	BH2-18				
Temperature (°C)	8.7	9.2				
pH (units)	7.6	7.5				
Electrical Conductivity (mS/cm) 12.1 12.3						

Analytical Test Results

Groundwater Standards

The site condition standards for the subject property were obtained from Table 6 and Table 8 of the document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ministry of the Environment, Conservation and Parks (MECP), and dated April 15, 2011. The selected MECP standards are based on the following considerations:

Shallow soil conditions;
Coarse-grained soil conditions;
Potable groundwater conditions:
Residential land use

It should be noted that all lands within a 30 m buffer area along the river shoreline and the limit of the adjacent wetland are qualified as a sensitive area. The location of BH2-18 lies within this 30 m buffer area, for which the MECP Table 8 standards are deemed to be applicable. For the remainder of the subject site, the MECP Table 6 standards are deemed to be applicable based on the future residential land use and potable groundwater conditions of the site.

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA) and is accredited and certified by the SCC/CALA for specific tests registered with the association.

Groundwater

Groundwater samples were collected from the monitoring wells installed in BH1-18 and BH2-18 on March 27 and June 7, 2018 and submitted for laboratory analysis of BTEX and PHC (F₁-F₄) parameters.

Page 5

File: PE1114-LET.03

No visual or olfactory indications of any petroleum hydrocarbons were observed in the groundwater samples recovered during the sampling event.

The results of the analytical testing are presented below in Table 2, as well as on the laboratory certificates of analysis appended to this report.

Table 2
Analytical Test Results – Groundwater
BTEX & PHCs (F₁-F₄)

		Gr	oundwater	Samples (μο	g/L)	MECP	MECP
Parameter	MDL	March 2	27, 2018	June 7	7, 2018	Table 8	Table 6
rarameter	(µg/L)	BH1-18- GW1	BH2-18- GW1*	BH1-18- GW2	BH2-18- GW2*	Standards (µg/L)	Standards (µg/L)
Benzene	0.5	nt	nt	nd	nd	5.0	0.5
Ethylbenzene	0.5	nt	nt	nd	nd	2.4	2.4
Toluene	0.5	nt	nt	nd	nd	22	24
Xylenes (Total)	0.5	nt	nt	nd	nd	300	72
PHC F₁	25	nd	nd	nd	nd	420	420
PHC F ₂	100	nd	nd	nd	nd	150	150
PHC F ₃	100	nd	nd	nd	nd	500	500
PHC F ₄	100	nd	nd	nd	nd	500	500

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- * Situated within the 30 m buffer of the Mississippi River, therefore MECP Table 8 standards apply
- <u>Underlined</u> Results exceed selected MECP Table 8 standards.
- Bold & Underlined Results exceed selected MECP 6 standards.

No BTEX or PHC parameters were detected above the laboratory method detection limits in the groundwater samples analysed during the March or June sampling events. The groundwater samples are in compliance with the MECP Table 8 and MECP Table 6 standards, as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

A third groundwater sampling event was carried out on December 7 and December 8, 2021. At that time, groundwater samples were collected from the monitoring wells installed in BH1-18 and BH2-18, as well as from three potable drinking water test wells (TW1-TW3) which had been installed on-site in 2015, and submitted for laboratory analysis of BTEX, PAHs, metals, PCBs, as well as dioxins/furans parameters.

No visual or olfactory indications of any petroleum hydrocarbons were observed in the groundwater samples recovered during the sampling events.

The results of the analytical testing are presented below in Tables 3 to 7, as well as on the laboratory certificates of analysis appended to this report.

Page 6

File: PE1114-LET.03

Table 3 Analytical Test Results – Groundwater BTEX

Parameter	MDL		Groundwa December		MECP Table 8	MECP Table 6		
i arameter	(µg/L)	BH1	BH2*	TW1	TW2*	TW3	Standards (µg/L)	Standards (µg/L)
Benzene	0.5	nd	nd	nd	nd	nd	5.0	0.5
Ethylbenzene	0.5	nd	nd	nd	nd	nd	2.4	2.4
Toluene	0.5	nd	nd	nd	nd	nd	22	24
Xylenes (Total)	0.5	nd	nd	nd	nd	nd	300	72

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- * Situated within the 30 m buffer of the Mississippi River, therefore MECP Table 8 standards apply
- <u>Underlined</u> Results exceed selected MECP Table 8 standards.
- Bold & Underlined Results exceed selected MECP 6 standards.

No BTEX parameters were detected in any of the groundwater samples analyzed. The results are in compliance with the MECP Table 8 and MECP Table 6 standards as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

Page 7

File: PE1114-LET.03

Table 4
Analytical Test Results – Groundwater
PAHs

	MDI		roundwa		MECP	MECP Table 6		
Parameter	MDL (µg/L)	BH1	BH2*	TW1	TW2*	TW3	Table 8 Standards (µg/L)	Standards (µg/L)
Acenaphthene	0.1	nd	nd	nd	nd	nd	4.1	4.1
Acenaphthylene	0.1	nd	nd	nd	nd	nd	1	1
Anthracene	0.1	nd	nd	nd	nd	nd	1	1
Benzo[a]anthracene	0.1	nd	nd	nd	nd	nd	1	1
Benzo[a]pyrene	0.01	nd	nd	nd	nd	nd	0.01	0.01
Benzo[b]fluoranthene	0.05	nd	nd	nd	nd	nd	0.1	0.1
Benzo[g,h,i]perylene	0.1	nd	nd	nd	nd	nd	0.2	0.2
Benzo[k]fluoranthene	0.05	nd	nd	nd	nd	nd	0.1	0.1
Chrysene	0.05	nd	nd	nd	nd	nd	0.1	0.1
Dibenzo[a,h]anthracene	0.1	nd	nd	nd	nd	nd	0.2	0.2
Fluoranthene	0.1	nd	nd	nd	nd	nd	0.41	0.41
Fluorene	0.1	nd	nd	nd	nd	nd	120	120
Indeno[1,2,3-cd]pyrene	0.1	nd	nd	nd	nd	nd	0.2	0.2
1-Methylnaphthalene	0.1	nd	nd	nd	nd	nd	3.2	3.2
2-Methylnaphthalene	0.1	nd	nd	nd	nd	nd	3.2	3.2
Methylnaphthalene (1&2)	0.1	nd	nd	nd	nd	nd	3.2	3.2
Naphthalene	0.1	nd	nd	nd	nd	nd	11	7
Phenanthrene	0.1	nd	nd	nd	nd	nd	1	1
Pyrene	0.1	nd	nd	nd	nd	nd	4.1	4.1

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- * Situated within the 30 m buffer of the Mississippi River, therefore MECP Table 8 standards apply
- <u>Underlined</u> Results exceed selected MECP Table 8 standards.
- <u>Bold & Underlined</u> Results exceed selected MECP 6 standards.

No PAH parameters were detected in any of the groundwater samples analyzed. The results are in compliance with the MECP Table 8 and MECP Table 6 standards as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

Page 8

File: PE1114-LET.03

Table 5
Analytical Test Results – Groundwater
Metals

Parameter	MDL			ter Sam ' & Decer	•	MECP Table 8	MECP Table 6	
i di dilletei	(µg/L)	BH1	BH2*	TW1	TW2	TW3	Standards (µg/L)	Standards (µg/L)
Antimony	0.5	nd	nd	nd	nd	nd	6	6
Arsenic	1	nd	nd	nd	nd	nd	25	25
Barium	10	250	220	210	240	230	1,000	1,000
Beryllium	0.5	nd	nd	nd	nd	nd	4	4
Boron	10	70	50	150	130	130	5,000	5,000
Cadmium	0.1	nd	nd	nd	nd	nd	2.1	2.1
Chromium	1	nd	nd	nd	nd	nd	50	50
Chromium VI	10	nd	nd	nd	nd	nd	25	25
Cobalt	0.2	0.2	nd	0.2	nd	nd	3.8	3.8
Copper	1	nd	nd	2	2	2	69	69
Lead	1	nd	nd	nd	nd	nd	10	10
Mercury	0.1	nd	nd	nd	nd	nd	0.29	0.1
Molybdenum	5	nd	nd	nd	nd	nd	70	70
Nickel	5	nd	nd	nd	nd	nd	100	100
Selenium	1	nd	nd	nd	nd	nd	10	10
Silver	0.1	nd	nd	nd	nd	nd	1.2	1.2
Sodium	2,000	12,000	8,000	27,000	22,000	28,000	490,000	490,000
Thallium	0.1	nd	nd	nd	nd	nd	2	2
Uranium	1	2	2	2	2	3	20	20
Vanadium	1	2	nd	nd	nd	nd	6.2	6.2
Zinc	10	nd	nd	nd	nd	nd	890	890

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- * Situated within the 30 m buffer of the Mississippi River, therefore MECP Table 8 standards apply
- <u>Underlined</u> Results exceed selected MECP Table 8 standards.
- Bold & Underlined Results exceed selected MECP 6 standards.

All detected metal parameters are in compliance with the MECP Table 8 and MECP Table 6 standards as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

Page 9

File: PE1114-LET.03

Table 6
Analytical Test Results – Groundwater
PCBs

Parameter	MDL		Groundwa December	-	MECP Table 8	MECP Table 6		
i arameter	(µg/L)	BH1	BH2*	TW1	TW2*	TW3	Standards (µg/L)	Standards (µg/L)
PCBs	0.1	nd	nd	nd	nd	nd	0.2	0.2

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- * Situated within the 30 m buffer of the Mississippi River, therefore MECP Table 8 standards apply
- Underlined Results exceed selected MECP Table 8 standards.
- Bold & Underlined Results exceed selected MECP 6 standards.

No PCB parameters were detected in any of the groundwater samples analyzed. The results are in compliance with the MECP Table 8 and MECP Table 6 standards as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

Table 7
Analytical Test Results – Groundwater
Dioxins & Furans

Parameter			ter Sam _l ' & Decen	MECP Table 8	MECP Table 6		
r ai ainetei	ВН1	BH2*	TW1	TW2*	TW3	Standards (pg/L)	Standards (pg/L)
Dioxins & Furans (Toxic Equivalency Value - TEQ)	0.18	0.26	0.0033	0.36	0.16	15	15

Notes:

- * Situated within the 30 m buffer of the Mississippi River, therefore MECP Table 8 standards apply
- Underlined Results exceed selected MECP Table 8 standards.
- Bold & Underlined Results exceed selected MECP 6 standards.

All reported dioxin and furans toxicity equivalent values are in compliance with the MECP Table 8 and MECP Table 6 standards as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

Page 10

File: PE1114-LET.03

Assessment

A supplemental groundwater sampling program was completed for the subject property, as per the 2017 Environmental Action Plan prepared by Paterson, as well as the comments noted in Stantec's review.

Previously installed monitoring wells MW1-08, MW2-08, MW4-08 and MW5-08, situated within the former remedial area along the bank of the Mississippi River, are no longer present on the subject site. On March 16, 2018, two boreholes (BH1-18 and BH2-18) were drilled on the subject site, in the vicinity of the former monitoring wells and mill building.

The boreholes were drilled into the bedrock and instrumented with groundwater monitoring wells upon their completion.

Groundwater samples from BH1-18 and BH2-18 were recovered on March 27, 2018 and submitted for analysis of petroleum hydrocarbon (PHCs F₁-F₄) parameters. No visual or olfactory indications (such as a hydrocarbon sheen) were noted in the groundwater during the sampling event. A second groundwater sampling event was conducted on June 7, 2018. At this time, groundwater samples recovered from BH1-18 and BH2-18 were submitted for analysis of benzene, toluene, ethylbenzene and xylene (BTEX) and PHC parameters. The groundwater samples were in compliance with the MECP Table 8 and MECP Table 6 standards, as well as the previous 2004 MOECC Table 1 and Table 2 standards used for the subject site in the RSC.

A third groundwater sampling event was carried out on December 7 and December 8, 2021. At that time, groundwater samples were collected from the monitoring wells installed in BH1-18 and BH2-18, as well as from three potable drinking water test wells (TW1-TW3) which had been installed on-site in 2015, and submitted for laboratory analysis of BTEX, PAHs, metals, PCBs, as well as dioxins/furans parameters. No visual or olfactory indications of any petroleum hydrocarbons were observed in the groundwater samples recovered during the sampling event. Based on the analytical test results, the groundwater samples are in compliance with the MECP Table 8 and MECP Table 6 standards, as well as the 2004 MOECC Table 1 and Table 2 standards.

Based on the findings of the groundwater sampling programs, it is our opinion that the groundwater has not been impacted by past on-site activities.

Page 11

File: PE1114-LET.03

Recommendations

Soil Management

As per the Environmental Action Plan issued by Paterson Group in November 2017, it is recommended that any soil remaining on-site be assessed by Paterson personnel at the time of site redevelopment, to ensure compliance with the applicable MECP soil standards. The soil management plan is appended to this report.

Monitoring Wells

If the monitoring wells installed onsite are not going to be used in the future, they should be abandoned according to Ontario Regulation 903. At this time however, it is recommended these wells not be abandoned, in case future groundwater monitoring is required.

Statement of Limitations

The client should be aware that any information pertaining to the soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those described by the test holes themselves.

This report was prepared for the sole use of Southwell Homes Ltd. Permission from Southwell Homes Ltd. and Paterson will be required to release this report to any other party.

Page 12

File: PE1114-LET.03

We trust that information meets your immediate requirements.

Paterson Group Inc.

Nick Sullivan, B.Sc.

Mark D'Arcy, P.Eng., QPESA

Report Distribution

- ☐ Southwell Homes Ltd.
- Paterson Group

Attachments

- Soil Management Plan
- ☐ Soil Profile and Test Data Sheets
- Symbols and Terms
- Analytical Test Results
- ☐ Drawing PE1114-8 Test Hole Location Plan

Soil Management Plan

Applying Standards for Material Classification

The testing and beneficial reuse of site generated material will be evaluated and approved by Paterson personnel under the direction of a Qualified Person (QP). An environmental engineer will evaluate the suitability of material reused at the subject site.

Based on the results of remedial program, it is not expected that material exceeding applicable standards will be encountered, however, if any excavated material exceeds the 2004 MOECC Table 2 standards, it will be removed from site for disposal at an approved waste disposal facility. Prior to sending such soil to the approved waste disposal facility, a soil sample will be collected and will be submitted for a Toxicity Characteristic Leaching Procedure (TCLP). Following approval from the approved waste disposal facility, any such soil will be transported directly to the facility.

If encountered, any inert deleterious fill material (concrete) will be loaded into trucks and transferred to an approved waste disposal facility.

Excavated material that is in compliance with the site standards may be reused onsite for backfilling or grading purposes, provided it is acceptable from a geotechnical perspective. If such soil cannot be reused on-site, the soil may be disposed of at an alternate site provided that the receiving site will accept the material.

Soil Identification Personnel

Paterson personnel will assist with the identification and testing of the soil.

Paterson will provide a representative under the supervision of the Qualified Person (QP) to visually inspect soil conditions and take soil samples for analysis upon request. A geotechnical engineer will be provided to assess the suitability of material used as backfill within the excavations.

Testing and Parameters for Soil Placed on Lots

Prior to any soil being placed on proposed lots, a sampling program will be carried out to recover representative soil samples for the analysis of selected parameters. Laboratory results are typically available within five business days.

Ottawa North Bay

Communication Procedure/Unexpected Impacts

If any of the soil encountered during excavation activities displays characteristic signs of contamination (i.e. odour, colour), samples will be submitted for confirmatory analysis. The contaminants of concern identified in the previous remedial program will include metals and PHCs. Material that is believed to be impacted will be segregated on-site until test results are received confirming its quality. If suspected impacted soil will be temporarily stockpiled on-site.

Southwell Homes Ltd. will be notified by Paterson immediately after identifying potentially impacted material.

Waste Disposal Facility

All excess material that does not comply with the selected site standards will be hauled to an approved waste disposal facility, otherwise all soil will be reused on-site.

patersongroup Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Groundwater Sampling Program Former Appletex Mill Appleton, Ontario

DATUM FILE NO. PE1114 **REMARKS** HOLE NO. **BH 1-18 BORINGS BY** CME 55 Power Auger **DATE** March 16, 2018 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD NUMBER Lower Explosive Limit % N VZ **GROUND SURFACE** 80 0 TOPSOIL 0.10 SS 1 42 15 SS 2 50 13 1 RC 1 86 2 RC 2 10 3 FILL: Brown silty sand, some gravel, cobbles and boulders, trace concrete RC 3 10 5 6 7.01 RC 4 100 48 8 ¥ 5 RC 100 52 **BEDROCK:** Grey limestone 9 RC 6 72 100 10 End of Borehole (GWL @ 8.46m - June 7, 2018) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongroup Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Groundwater Sampling Program Former Appletex Mill Appleton, Ontario

DATUM FILE NO. PE1114 **REMARKS** HOLE NO. **BH 2-18** BORINGS BY CME 55 Power Auger **DATE** March 16, 2018 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0 FILL: Topsoil with organics, trace RC 1 100 52 gravel, cobbles and boulders 1 1.83 RC 2 100 94 2 3 RC 3 100 68 **BEDROCK:** Grey limestone RC 4 100 93 5 6 RC 5 100 92 End of Borehole (GWL @ 3.35m - June 7, 2018) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

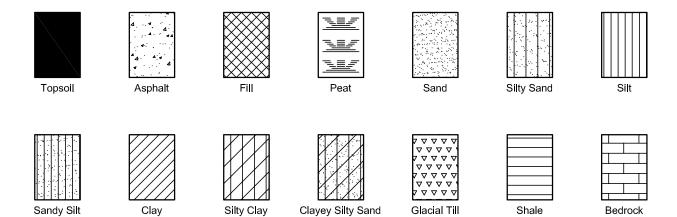
p'₀ - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

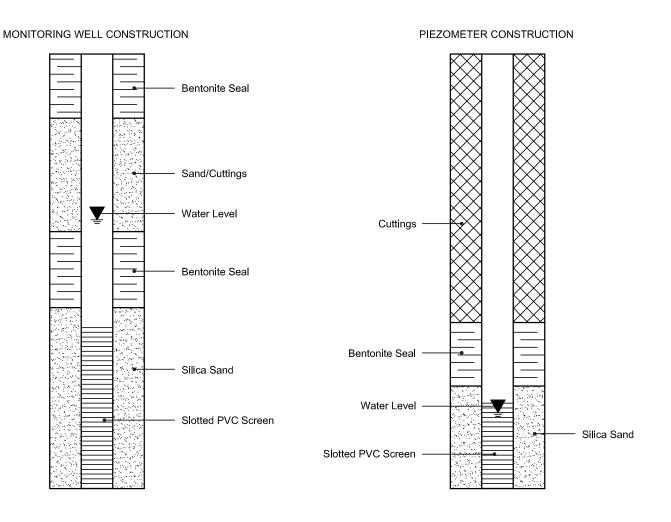
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 24115 Project: PE1114 Custody: 117267

Report Date: 11-Jun-2018 Order Date: 8-Jun-2018

Order #: 1823674

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1823674-01
 BH1-18-GW2

 1823674-02
 BH2-18-GW2

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 1823674

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 8-Jun-2018

Client PO: 24115

Report Date: 11-Jun-2018

Order Date: 8-Jun-2018

Project Description: PE1114

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Ana	lysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	9-Jun-18	9-Jun-18
PHC F1	CWS Tier 1 - P&T GC-FID	9-Jun-18	9-Jun-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Jun-18	10-Jun-18

Order #: 1823674

Report Date: 11-Jun-2018

Order Date: 8-Jun-2018

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24115 Project Description: PE1114

	_				
	Client ID:	BH1-18-GW2	BH2-18-GW2	-	-
	Sample Date:	06/07/2018 09:00	06/07/2018 09:00	-	-
	Sample ID:	1823674-01	1823674-02	-	-
	MDL/Units	Water	Water	-	-
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	87.7%	88.6%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Order #: 1823674

Report Date: 11-Jun-2018 Order Date: 8-Jun-2018

 Client: Paterson Group Consulting Engineers
 Order Date: 8-Jun-2018

 Client PO: 24115
 Project Description: PE1114

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	72.3		ug/L		90.3	50-140			

Order #: 1823674

Report Date: 11-Jun-2018 Order Date: 8-Jun-2018

Client: Paterson Group Consulting EngineersOrder Date: 8-Jun-2018Client PO: 24115Project Description: PE1114

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	72.6		ug/L		90.7	50-140			

Order #: 1823674

Report Date: 11-Jun-2018 Order Date: 8-Jun-2018

Client: Paterson Group Consulting Engineers Client PO: 24115 **Project Description: PE1114**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2220	25	ug/L		111	68-117			
F2 PHCs (C10-C16)	1740	100	ug/L		96.5	60-140			
F3 PHCs (C16-C34)	4840	100	ug/L		130	60-140			
F4 PHCs (C34-C50)	3080	100	ug/L		124	60-140			
Volatiles									
Benzene	30.9	0.5	ug/L		77.4	60-130			
Ethylbenzene	29.8	0.5	ug/L		74.6	60-130			
Toluene	33.6	0.5	ug/L		84.0	60-130			
m,p-Xylenes	65.8	0.5	ug/L		82.2	60-130			
o-Xylene	30.3	0.5	ug/L		75.6	60-130			
Surrogate: Toluene-d8	66.0		ug/L		82.5	50-140			

Order #: 1823674

Report Date: 11-Jun-2018 Order Date: 8-Jun-2018 **Project Description: PE1114**

Client: Paterson Group Consulting Engineers

Client PO: 24115

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Paracel ID: 1823674

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 117267

	•	١	•	•	•	•	•	_	_	
l	_ A	В	0	R	Α	T 0	RI	ES	LTD.	

Address: 154 Loionnade Road S. Telephone: 613 - 726 7381 Criteria: 150. Reg. 153/04 (As Amended) Table 2 RSC Filing O. Reg. 558/00 PWQO CCME SUB (Storm) SUB (Sanitary) Municipality: Other: Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses	Client Name: Date ISM Gran DOC.		Project Reference	PEIII	4							1 11	rnaroun	d Time:
Criteria: #0. Reg. 153/04 (As Amended) Table 2 RSC Filing O. Reg. 558/00 PWQO CCME SUB (Storm) SUB (Sanitary) Municipality: Other:	Contact Name: War Little		Quote#									□ 1 Day		□ 3 Day
Criteria: #0. Reg. 153/04 (As Amended) Table 2 RSC Filing O. Reg. 558/00 PWQO CCME SUB (Storm) SUB (Sanitary) Municipality: Other.		2411								p.ca	□ 2 Day	mirad	Regular	
Criteria: BO. Reg. 153/04 (As Amended) Table 2	Telephone: 613-226-7381											-		
Sample ID/Location Name Sample Taken Sample Taken Sample Taken Sample ID/Location Name Sample Taken	Criteria: 10. Reg. 153/04 (As Amended) Table 2 RSC Filing 0.	Reg. 558/0	0 PWQO	CCME DSU	B (Stor	m) [J SU	B (Sa	nitary) Mur	nicipality:		Other:	
Sample ID/Location Name	Matrix Type: S (Soil:Sed.) GW (Ground Water) SW (Surface Water) SS (Storm:Sami	itary Sewer) P	(Paint) A (Air) O (Other)	Req	uirec	l An	alyse	s					
Sample ID/Location Name BHI - 18-6-W2	Paracel Order Number: 1823674	Volume Containers	Sample	Taken		35	ls	als by ICP		(SWI)				
1 BHI-18-6-W2 OW 3 TWO718 V 2 PH2-18-6-WZ OW 3 TWO718 3 TWO718 6 7	Sample ID/Location Name	Air # of	Date	Time	РНС	VO	PAF	Met	5	B ()				
2 PH2-18-6WZ		3	Juno 7/18		V					Ц				
3 4 5 6 7	2 PH2-18-6-WZ UT	3			L	/	1	_		Ц			-	
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Control of the Control of Control				\perp	_	-	+	-	Н			-	
6 7	4				+	-	4	+	+	Н		-	-	
7	5				+	+	+	+	+	Н	-	-		
	6				+	-	+	+	+	Н	_	-		
	7				+	-	-	+	+	Н		+		-
	8				+	-	4	+	+	Н				
	9				+	+	4	+	+	Н			-	
10 Method of Delivery:	10								_			Me	whod of Del	verv
Received by Driver Depost: ONE PORN DON WAY WEDSON DON WAY WEST OF THE PORN DON WAY		by Driver/Dep	Jeans	Rope	yed at L	ない。	ono one	2N		DOM	Verily Verily		Sic	
2010 40 40 40 40 40 40 40 40 40 40 40 40 40	Relinquished By (Print): Kll 1197 A Date/Time		06/18 10	oo Date/	Time:	JV	N (18.8	018		Q, 30 Date T	inc. fru	075	19 174
Relinquished By (Print): Which Date/Time: 08/06/18 10 20 Date/Time: 1/1/1/18 Date/Time: 1/1/18 Date/Time: 08/06/18 10 20 Date/Time: 1/1/1/18 Temperature: 0.7 °C pH Verified [] By:	Date/Time: 711/0 4/18 Temperatu	ure:	"C	AM. Temp	erature:	16	7	C 1			pH Ve	rified[] By:		

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-66404-1 Client Project/Site: 1968225-PH4398

or:

Eurofins Environment Testing Canada 146 Colonnade Road, No. 8 Ottawa, Ontario K2E 7Y1

Attn: Rebecca Koshy

Marrissa Williams

Authorized for release by: 12/15/2021 5:59:21 PM

Marrissa Williams, Project Manager (717)556-7246

Marrissa.Williams@eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

9

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.
- · Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.
 Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental and (B) whether Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Marrissa Williams

Marrissa Williams Project Manager 12/15/2021 5:59:21 PM

4

6

9

10

11

Case Narrative

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

Job ID: 410-66404-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-66404-1

Receipt

The sample was received on 12/10/2021 9:56 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 11.6°C

Receipt Exceptions

The following sample was received at the laboratory outside the required temperature criteria: 1600428-TW1 (410-66404-1). The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

Dioxin

Method 1613B: Any peak area that is the result of interferences from poly-chlorinated diphenyl ethers observed in the sample has been removed from the calculated results prior to reporting the data for totals. 1600428-TW1 (410-66404-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 410-66404-1

2

3

4

F

6

7

8

IU

11

Sample Summary

Client: Eurofins Environment Testing Canada Project/Site: 1968225-PH4398

Job ID: 410-66404-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-66404-1	1600428-TW1	Water	12/07/21 00:00	12/10/21 09:56

Client Sample Results

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

13C-OCDD

13C-OCDF

Client Sample ID: 1600428-TW1

Lab Sample ID: 410-66404-1

Matrix: Water Date Collected: 12/07/21 00:00 Date Received: 12/10/21 09:56

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	ND	cn	27	3.3	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,4,6,7,8-HpCDF	ND	cn	27	0.068	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,4,7,8-HxCDD	ND	cn	27	0.12	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,4,7,8-HxCDF	ND	cn	27	0.69	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,4,7,8,9-HpCDF	0.31	J I cn	27	0.096	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,6,7,8-HxCDD	ND	cn	27	0.12	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,6,7,8-HxCDF	ND	cn	27	0.70	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,7,8-PeCDD	ND	cn	27	0.19	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,7,8-PeCDF	ND	cn	27	0.14	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,7,8,9-HxCDD	ND	cn	27	0.12	pg/L		12/13/21 16:35	12/14/21 13:50	1
1,2,3,7,8,9-HxCDF	ND	cn	27	0.85	pg/L		12/13/21 16:35	12/14/21 13:50	1
2,3,4,6,7,8-HxCDF	ND	cn	27	0.69	pg/L		12/13/21 16:35	12/14/21 13:50	1
2,3,4,7,8-PeCDF	ND	cn	27	0.11	pg/L		12/13/21 16:35	12/14/21 13:50	1
2,3,7,8-TCDD	ND	cn	4.3		pg/L		12/13/21 16:35	12/14/21 13:50	1
2,3,7,8-TCDF	ND	cn	5.4	0.14	pg/L		12/13/21 16:35	12/14/21 13:50	1
OCDD	0.75	J I cn	120	0.17	pg/L		12/13/21 16:35	12/14/21 13:50	1
OCDF	ND	cn	54		pg/L		12/13/21 16:35	12/14/21 13:50	1
Total HpCDD	ND	cn	27	3.3	pg/L		12/13/21 16:35	12/14/21 13:50	1
Total HpCDF	0.31	J I B cn	27	0.082			12/13/21 16:35	12/14/21 13:50	1
Total HxCDD	0.61	JIBcn	27	0.12	pg/L		12/13/21 16:35	12/14/21 13:50	1
Total HxCDF	ND	cn	27	0.85	pg/L		12/13/21 16:35	12/14/21 13:50	1
Total PeCDD	ND	cn	27		pg/L		12/13/21 16:35	12/14/21 13:50	1
Total PeCDF	0.89	JIBcn	27		pg/L		12/13/21 16:35	12/14/21 13:50	1
Total TCDD	ND	cn	5.4		pg/L		12/13/21 16:35	12/14/21 13:50	1
Total TCDF	0.60	J I cn	5.4		pg/L		12/13/21 16:35	12/14/21 13:50	1
Total PCDD	1.4	JIBcn	5.4		pg/L		12/13/21 16:35	12/14/21 13:50	1
Total PCDF	1.8	JIBcn	5.4	0.27	pg/L		12/13/21 16:35	12/14/21 13:50	1
Total PCDD/PCDF	3.2	J I B cn	5.4	0.53	pg/L		12/13/21 16:35	12/14/21 13:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	81		23 - 140					12/14/21 13:50	
13C-1,2,3,4,6,7,8-HpCDF	94		28 - 143					12/14/21 13:50	1
13C-1,2,3,4,7,8-HxCDD		cn	32 - 141					12/14/21 13:50	1
13C-1,2,3,4,7,8-HxCDF		cn	26 - 152					12/14/21 13:50	
13C-1,2,3,4,7,8,9-HpCDF		cn	26 - 138					12/14/21 13:50	
13C-1,2,3,6,7,8-HxCDD		cn	28 - 130					12/14/21 13:50	
13C-1,2,3,6,7,8-HxCDF		cn	26 - 123					12/14/21 13:50	
13C-1,2,3,7,8-PeCDD		cn	25 - 181					12/14/21 13:50	1
13C-1,2,3,7,8-PeCDF		cn	24 - 185					12/14/21 13:50	1
13C-1,2,3,7,8,9-HxCDD		cn	28 - 130					12/14/21 13:50	
13C-1,2,3,7,8,9-HxCDF		cn	29 - 147					12/14/21 13:50	•
13C-2,3,4,6,7,8-HxCDF		cn	28 - 136					12/14/21 13:50	
13C-2,3,4,7,8-PeCDF		cn	21 - 178					12/14/21 13:50	
13C-2,3,7,8-TCDD		cn	25 - 164					12/14/21 13:50	1
13C-2,3,7,8-TCDF		cn	24 - 169					12/14/21 13:50	1
100-2,0,1,0-1001	70	OI I	27 - 109				12/13/21 10.33	12/17/21 13.30	

Eurofins Lancaster Laboratories Env, LLC

12/15/2021

12/13/21 16:35 12/14/21 13:50

12/13/21 16:35 12/14/21 13:50

17 - 157

17 - 157

87 cn

89 cn

Job ID: 410-66404-1

Job ID: 410-66404-1

Project/Site: 1968225-PH4398

Client Sample ID: 1600428-TW1

Client: Eurofins Environment Testing Canada

Lab Sample ID: 410-66404-1

						WHO 2	2005	
						ND =	: 0	
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
1,2,3,4,6,7,8-HpCDD	ND	cn	27	3.3	pg/L	0.01	0.00	1613B
1,2,3,4,6,7,8-HpCDF	ND	cn	27	0.068	pg/L	0.01	0.00	1613B
1,2,3,4,7,8-HxCDD	ND	cn	27	0.12	pg/L	0.1	0.00	1613B
1,2,3,4,7,8-HxCDF	ND	cn	27	0.69	pg/L	0.1	0.00	1613B
1,2,3,4,7,8,9-HpCDF	0.31	JIcn	27	0.096	pg/L	0.01	0.0031	1613B
1,2,3,6,7,8-HxCDD	ND	cn	27	0.12	pg/L	0.1	0.00	1613B
1,2,3,6,7,8-HxCDF	ND	cn	27	0.70	pg/L	0.1	0.00	1613B
1,2,3,7,8-PeCDD	ND	cn	27	0.19	pg/L	1	0.00	1613B
1,2,3,7,8-PeCDF	ND	cn	27	0.14	pg/L	0.03	0.00	1613B
1,2,3,7,8,9-HxCDD	ND	cn	27	0.12	pg/L	0.1	0.00	1613B
1,2,3,7,8,9-HxCDF	ND	cn	27	0.85	pg/L	0.1	0.00	1613B
2,3,4,6,7,8-HxCDF	ND	cn	27	0.69	pg/L	0.1	0.00	1613B
2,3,4,7,8-PeCDF	ND	cn	27	0.11	pg/L	0.3	0.00	1613B
2,3,7,8-TCDD	ND	cn	4.3	0.20	pg/L	1	0.00	1613B
2,3,7,8-TCDF	ND	cn	5.4	0.14	pg/L	0.1	0.00	1613B
OCDD	0.75	JIcn	120	0.17	pg/L	0.0003	0.00023	1613B
OCDF	ND	cn	54	0.15	pg/L	0.0003	0.00	1613B
						WHO 2	2005	
						ND =	0	
Analyto	Popult	Ouglifier	NONE	NONE	l Init	TEE	TEO	Mathad

						WHO 2	2005		
						ND =	0		
Analyte	Result C	Qualifier	NONE	NONE	Unit	TEF	TEQ	Method	
Total Toxic Dioxins and Furans					pg/L		0.0033	TEQ	

TEF Reference:

WHO 2005 = World Health Organization (WHO) 2005 TEF, Dioxins, Furans and PCB Congeners

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

Job ID: 410-66404-1

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Lab Sample ID: MB 410-204823/1-A

Matrix: Water

Analysis Batch: 205076

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 204823

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	ND		25	0.80	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,4,6,7,8-HpCDF	0.563	JI	25	0.079	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,4,7,8-HxCDD	ND		25	0.14	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,4,7,8-HxCDF	ND		25	0.47	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,4,7,8,9-HpCDF	ND		25	0.11	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,6,7,8-HxCDD	ND		25	0.14	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,6,7,8-HxCDF	2.57	JI	25	0.43	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,7,8-PeCDD	0.623	JI	25	0.21	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,7,8-PeCDF	ND		25	0.15	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,7,8,9-HxCDD	ND		25	0.15	pg/L		12/13/21 16:35	12/14/21 13:01	1
1,2,3,7,8,9-HxCDF	ND		25	0.58	pg/L		12/13/21 16:35	12/14/21 13:01	1
2,3,4,6,7,8-HxCDF	ND		25	0.47	pg/L		12/13/21 16:35	12/14/21 13:01	1
2,3,4,7,8-PeCDF	ND		25	0.13	pg/L		12/13/21 16:35	12/14/21 13:01	1
2,3,7,8-TCDD	ND		4.0	0.22	pg/L		12/13/21 16:35	12/14/21 13:01	1
2,3,7,8-TCDF	ND		5.0	0.18	pg/L		12/13/21 16:35	12/14/21 13:01	1
OCDD	ND		110	0.19	pg/L		12/13/21 16:35	12/14/21 13:01	1
OCDF	ND		50	0.16	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total HpCDD	ND		25	0.80	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total HpCDF	0.563	JI	25	0.094	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total HxCDD	1.28	JI	25	0.14	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total HxCDF	2.57	JI	25	0.49	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total PeCDD	0.623	JI	25	0.21	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total PeCDF	1.19	JI	25	0.14	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total TCDD	ND		5.0	0.22	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total TCDF	ND		5.0	0.18	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total PCDD	1.90	JI	5.0	0.31	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total PCDF	4.32	JI	5.0	0.21	pg/L		12/13/21 16:35	12/14/21 13:01	1
Total PCDD/PCDF	6.22	I	5.0	0.26	pg/L		12/13/21 16:35	12/14/21 13:01	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	73		23 - 140	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,4,6,7,8-HpCDF	86		28 - 143	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,4,7,8-HxCDD	72		32 - 141	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,4,7,8-HxCDF	79		26 - 152	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,4,7,8,9-HpCDF	81		26 - 138	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,6,7,8-HxCDD	77		28 - 130	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,6,7,8-HxCDF	87		26 - 123	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,7,8-PeCDD	54		25 - 181	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,7,8-PeCDF	60		24 - 185	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,7,8,9-HxCDD	70		28 - 130	12/13/21 16:35	12/14/21 13:01	1
13C-1,2,3,7,8,9-HxCDF	74		29 - 147	12/13/21 16:35	12/14/21 13:01	1
13C-2,3,4,6,7,8-HxCDF	73		28 - 136	12/13/21 16:35	12/14/21 13:01	1
13C-2,3,4,7,8-PeCDF	57		21 - 178	12/13/21 16:35	12/14/21 13:01	1
13C-2,3,7,8-TCDD	65		25 - 164	12/13/21 16:35	12/14/21 13:01	1
13C-2,3,7,8-TCDF	59		24 - 169	12/13/21 16:35	12/14/21 13:01	1
13C-OCDD	79		17 - 157	12/13/21 16:35	12/14/21 13:01	1
13C-OCDF	83		17 - 157	12/13/21 16:35	12/14/21 13:01	1

Eurofins Lancaster Laboratories Env, LLC

Page 7 of 17

2

3

_

6

8

10

44

QC Sample Results

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

Job ID: 410-66404-1

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters) (Continued)

Lab Sample ID: LCS 410-204823/2-A

Matrix: Water

Analysis Batch: 205076

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 204823 %Rec.

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,4,6,7,8-HpCDD	1000	970		pg/L		97	70 - 140	
1,2,3,4,6,7,8-HpCDF	1000	991		pg/L		99	82 - 122	
1,2,3,4,7,8-HxCDD	1000	1040		pg/L		104	70 - 164	
1,2,3,4,7,8-HxCDF	1000	1040		pg/L		104	72 - 134	
1,2,3,4,7,8,9-HpCDF	1000	967		pg/L		97	78 - 138	
1,2,3,6,7,8-HxCDD	1000	1020		pg/L		102	76 - 134	
1,2,3,6,7,8-HxCDF	1000	1000		pg/L		100	84 - 130	
1,2,3,7,8-PeCDD	1000	1060		pg/L		106	70 - 142	
1,2,3,7,8-PeCDF	1000	1040		pg/L		104	80 - 134	
1,2,3,7,8,9-HxCDD	1000	1070		pg/L		107	64 - 162	
1,2,3,7,8,9-HxCDF	1000	1010		pg/L		101	78 - 130	
2,3,4,6,7,8-HxCDF	1000	996		pg/L		100	70 - 156	
2,3,4,7,8-PeCDF	1000	1040		pg/L		104	68 - 160	
2,3,7,8-TCDD	200	199		pg/L		100	67 - 158	
2,3,7,8-TCDF	200	208		pg/L		104	75 - 158	
OCDD	2000	1950		pg/L		97	78 - 144	
OCDF	2000	2060		pg/L		103	63 - 170	
100	. 100							

201	1.00
LUS	LCS

		_00	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,4,6,7,8-HpCDD	67		26 - 166
13C-1,2,3,4,6,7,8-HpCDF	77		21 - 158
13C-1,2,3,4,7,8-HxCDD	69		21 - 193
13C-1,2,3,4,7,8-HxCDF	75		19 - 202
13C-1,2,3,4,7,8,9-HpCDF	75		20 - 186
13C-1,2,3,6,7,8-HxCDD	74		25 - 163
13C-1,2,3,6,7,8-HxCDF	79		21 - 159
13C-1,2,3,7,8-PeCDD	53		21 - 227
13C-1,2,3,7,8-PeCDF	58		21 - 192
13C-1,2,3,7,8,9-HxCDD	66		25 - 163
13C-1,2,3,7,8,9-HxCDF	71		17 - 205
13C-2,3,4,6,7,8-HxCDF	71		22 - 176
13C-2,3,4,7,8-PeCDF	60		13 - 328
13C-2,3,7,8-TCDD	64		20 - 175
13C-2,3,7,8-TCDF	62		22 - 152
13C-OCDD	74		13 - 199
13C-OCDF	75		13 - 199

QC Association Summary

Client: Eurofins Environment Testing Canada Job ID: 410-66404-1

Project/Site: 1968225-PH4398

Specialty Organics

Prep Batch: 204823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-66404-1	1600428-TW1	Total/NA	Water	1613B	
MB 410-204823/1-A	Method Blank	Total/NA	Water	1613B	
LCS 410-204823/2-A	Lab Control Sample	Total/NA	Water	1613B	

Analysis Batch: 205076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-66404-1	1600428-TW1	Total/NA	Water	1613B	204823
MB 410-204823/1-A	Method Blank	Total/NA	Water	1613B	204823
LCS 410-204823/2-A	Lab Control Sample	Total/NA	Water	1613B	204823

-66404-1

3

4

6

0

10

11

Lab Chronicle

Client: Eurofins Environment Testing Canada Job ID: 410-66404-1

Project/Site: 1968225-PH4398

Date Received: 12/10/21 09:56

Client Sample ID: 1600428-TW1

Lab Sample ID: 410-66404-1 Date Collected: 12/07/21 00:00

Matrix: Water

Batch Batch **Dilution** Batch Prepared **Prep Type** Method **Factor** or Analyzed Type Run Number Analyst Lab Prep Total/NA 1613B 204823 12/13/21 16:35 X5YV **ELLE** 1613B ELLE Total/NA 205076 12/14/21 13:50 RGA5 Analysis 1

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Matrix: Water Prep Type: Total/NA

			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		HpCDD	HpCDF	HxCDD	HxCDF	HpCDF2	HxDD	HxDF	PeCDD
Lab Sample ID	Client Sample ID	(23-140)	(28-143)	(32-141)	(26-152)	(26-138)	(28-130)	(26-123)	(25-181)
410-66404-1	1600428-TW1	81 cn	94 cn	84 cn	92 cn	92 cn	86 cn	93 cn	61 cn
MB 410-204823/1-A	Method Blank	73	86	72	79	81	77	87	54
			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PeCDF	13CHxCD	HxCF	13CHxCF	PeCF	TCDD	TCDF	OCDD
Lab Sample ID	Client Sample ID	(24-185)	(28-130)	(29-147)	(28-136)	(21-178)	(25-164)	(24-169)	(17-157)
410-66404-1	1600428-TW1	65 cn	82 cn	85 cn	85 cn	66 cn	70 cn	70 cn	87 cn
MB 410-204823/1-A	Method Blank	60	70	74	73	57	65	59	79
			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		OCDF							
Lab Sample ID	Client Sample ID	(17-157)							
410-66404-1	1600428-TW1	89 cn							
MB 410-204823/1-A	Method Blank	83							

Surrogate Legend

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

HxCDD = 13C-1,2,3,4,7,8-HxCDD

HxCDF = 13C-1,2,3,4,7,8-HxCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

HxDF = 13C-1,2,3,6,7,8-HxCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

13CHxCD = 13C-1,2,3,7,8,9-HxCDD

HxCF = 13C-1,2,3,7,8,9-HxCDF

13CHxCF = 13C-2,3,4,6,7,8-HxCDF

PeCF = 13C-2,3,4,7,8-PeCDF

 $\mathsf{TCDD} = \mathsf{13C-2}, \mathsf{3}, \mathsf{7}, \mathsf{8-TCDD}$

TCDF = 13C-2,3,7,8-TCDF

OCDD = 13C-OCDD

OCDF = 13C-OCDF

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Matrix: Water Prep Type: Total/NA

			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		HpCDD	HpCDF	HxCDD	HxCDF	HpCDF2	HxDD	HxDF	PeCDD
Lab Sample ID	Client Sample ID	(26-166)	(21-158)	(21-193)	(19-202)	(20-186)	(25-163)	(21-159)	(21-227)
LCS 410-204823/2-A	Lab Control Sample	67	77	69	75	75	74	79	53
			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PeCDF	13CHxCD	HxCF	13CHxCF	PeCF	TCDD	TCDF	OCDD
Lab Sample ID	Client Sample ID	(21-192)	(25-163)	(17-205)	(22-176)	(13-328)	(20-175)	(22-152)	(13-199)
LCS 410-204823/2-A	Lab Control Sample	58	66	71	71	60	64	62	74
			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		OCDF							
Lab Sample ID	Client Sample ID	(13-199)							
LCS 410-204823/2-A	Lab Control Sample	75							
Surrogate Legend									

Eurofins Lancaster Laboratories Env, LLC

Page 11 of 17

-0

Job ID: 410-66404-1

2

4

6

8

10

11

Isotope Dilution Summary

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

HxCDD = 13C-1,2,3,4,7,8-HxCDD

HxCDF = 13C-1,2,3,4,7,8-HxCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

HxDF = 13C-1,2,3,6,7,8-HxCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

13CHxCD = 13C-1,2,3,7,8,9-HxCDD

HxCF = 13C-1,2,3,7,8,9-HxCDF

13CHxCF = 13C-2,3,4,6,7,8-HxCDF

PeCF = 13C-2,3,4,7,8-PeCDF

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

OCDD = 13C-OCDD

OCDF = 13C-OCDF

Job ID: 410-66404-1

2

3

4

5

6

ŏ

1 0

11

Accreditation/Certification Summary

Client: Eurofins Environment Testing Canada

Project/Site: 1968225-PH4398

Job ID: 410-66404-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	1.01	11-30-22
A2LA	ISO/IEC 17025	0001.01	11-30-22
Alaska	State	PA00009	06-30-22
Alaska (UST)	State	17-027	02-28-22
Arizona	State	AZ0780	03-12-22
Arkansas DEQ	State	88-0660	08-10-22
California	State	2792	02-02-22
Colorado	State	PA00009	06-30-22
Connecticut	State	PH-0746	06-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-22
Delaware (DW)	State	N/A	02-01-22
Florida	NELAP	E87997	06-30-22
Georgia (DW)	State	C048	01-31-22
Hawaii	State	N/A	01-31-22
Illinois	NELAP	200027	01-31-23
lowa	State	361	03-02-22
Kansas	NELAP	E-10151	10-31-22
Kentucky (DW)	State	KY90088	01-01-22
Kentucky (UST)	State	1.01	11-30-22
Kentucky (WW)	State	KY90088	12-31-21
Louisiana	NELAP	02055	06-30-22
Maine	State	2019012	03-12-22
Maryland	State	100	06-30-22
Massachusetts	State	M-PA009	06-30-22
	State		
Michigan Minnesota	NELAP	9930 042-999-487	01-31-22 12-31-22
Missouri	State	450	01-31-25
Montana (DW)	State	0098 NE OS 33 47	01-01-22
Nebraska	State NELAP	NE-OS-32-17	01-31-22
New Hampshire		2730	01-10-22
New Jersey	NELAP	PA011	06-30-22
New York	NELAP	10670	04-01-22
North Carolina (DW)	State	42705	07-31-22
North Carolina (WW/SW)	State	521	12-31-21
North Dakota	State	R-205	01-31-22
Oklahoma	NELAP	R-205	08-31-22
Oregon	NELAP	PA200001	09-11-22
PALA	Canada	1978	09-16-24
Pennsylvania	NELAP	36-00037	01-31-22
Rhode Island	State	LAO00338	01-31-22
South Carolina	State	89002002	01-31-22
Tennessee	State	02838	01-31-22
Texas	NELAP	T104704194-21-40	08-31-22
Utah	NELAP	PA000092019-16	03-01-22
Vermont	State	VT - 36037	10-28-22
Virginia	NELAP	460182	06-14-22
Washington	State	C457	04-12-22
West Virginia (DW)	State	9906 C	12-31-21
West Virginia DEP	State	055	12-31-21
Wyoming	State	8TMS-L	01-31-22

Eurofins Lancaster Laboratories Env, LLC

3

4

0

8

9

4 4

Accreditation/Certification Summary

Client: Eurofins Environment Testing Canada Job ID: 410-66404-1

Project/Site: 1968225-PH4398

Laboratory: Eurofins Lancaster Laboratories Env, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wyoming (UST)	A2LA	1.01	11-30-22

3

4

Q

9

10

11

216338

STANDARD CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727

MONDANIA.	
	VEC T NO
## 121 #2# 1 J# # 1	YES NO

CLIENT INFORMATION								INVO	CE IN	IFORM		10-66404 CI				IIII	YES NO ()
ompany: Theroling On Hau	ra		1				Company	r:			4	10-66404 CI	nain of	Custody			
antacti Robert & Roshiu		_				1 31	Contact:				_			Email: #	4		
ddress:							Address:							Email: #	2:		
elephone; Cell:							Telephon	ie:						PO #:			
mail: #1:				-4	-	-	7-11				RF	GULATIO	v/GII		F RFC	HIRED	
mail: #2:				14				Sanitary	Saura C	Times.	IVE	GOLATIO	1,00		O. Reg		
10/000	-												_	—			Table # Coarse / Fine, Surface /
roject: 1968225-PH439		Quote #	:					Storm Se					-	submissio	n will form	ults from this n part of a forr ition (RSC) und	mal subsurface
TURN-AROUND TIME (Business									3 (Use D	W CoC If a	nalyzing	drinking water)			/04. Analy: list or	sis of full parar	
1 Day* (100%) 2 Day** (50%) 3-5 Di Please contact Lab In advance to determine rush a	ays (25%)		L	5-7 Da	ys (Stand	lard)		PWQO								No 🗌	
*For results reported after rush due date, surcharges will apply: before	12:00 - 10	0%, after						O.Reg 34	7						D. Reg 4	106 Exces	
**For results reported after rush due date, surcharges will apply: before	12:00 - 50	0%, after	12:00 - 25	i%.				Other: _						Tab	le # Tyl		depth/Strat/Ceiling/mSPLP Leachate d /Res-Park /Agri/All Other
		5 . 11	100			110										Category	: Surface /Subsurface
The optimal temperature conditions during transport should be less than 10°C. Sample(s) cannot be frozen, unless otherwise indicated or agreed upon with the Laboratory. Note	Fleld File	Details								T	2)		Т			-1-25	RN#
that this COC is not to be used for drinking water samples. The COC must be complete upon submission of the samples, there will be a \$25 surcharge if required information is					O.Re	g.153 par	ameters			2	a						(Lab Use Only)
missing (required fields are shaded in grey).	Ě	Ser S						rganic		/_							
	Sample Matrix	# of Containers	PHCF1 - F4					Metals + Inorga	Metals only	Ja	3						
iample ID Date/Time Collected	Samp	# of C	PHCF	BTEX	VOC	PAHS	PGBs	Metal	Meta		-						
600428 712 7021	W	2															
-1(1)		6															
1 00 1																	
	-																
	-						-		_								
	-			-													
					-												
PRINT				SIGN		<u> </u>			DATE	E/TIME		TEMP (°C)	сомм	ENTS:			
sampled By:				,		5			,	ı		TENT (C)	1				
Relinquished By:			SIM					8	12	121		20	1				, /
Received By: Leah Foreman		-	-	5				12	10/2	16	956	8	cust	ODY SEAL:		YES V	NO ice packs submit Yes No
401 Manualla Drive Hall North York ON M31 3U0. Talanhanas /	16 661 5	207 6	200405	cieldo Dan	d Hait #	630 60 0	atharines	ON 1200	DE Tol	anhana. 00	E COD 00	07 - C00 N	ala Caust	Vinesto-	ON 1/30 :	ann Talaal	512 524 6267

TAB Coder remple

AFSTDCOC.8

Copies: White - Laboratory, Yellow - Sampler

12/15/2021

Page 15 of 17

Login Sample Receipt Checklist

Client: Eurofins Environment Testing Canada Job Number: 410-66404-1

Login Number: 66404 List Source: Eurofins Lancaster Laboratories Env, LLC

List Number: 1

Creator: Bryan, Debra A

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	No ice present, no attempt to chill
Cooler Temperature is acceptable (=6C, not frozen).</td <td>False</td> <td>Refer to Job Narrative for details.</td>	False	Refer to Job Narrative for details.
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
WV: Container Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	

3

4

5

6

8

9

11

Definitions/Glossary

Client: Eurofins Environment Testing Canada

Job ID: 410-66404-1 Project/Site: 1968225-PH4398

Qualifiers

	10	~	•
u	IU.	ΧII	н

	Qualifier	Qualifier Description
Ī	В	Compound was found in the blank and sample.
	cn	Refer to Case Narrative for further detail
	l	Value is EMPC (estimated maximum possible concentration).
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

LOD LOQ MCL

DLC

EDL

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-67026-1 Client Project/Site: P968398-PH9398

or:

Eurofins Environment Testing Canada 146 Colonnade Road, No. 8 Ottawa, Ontario K2E 7Y1

Attn: Rebecca Koshy

Marrissa Williams

Authorized for release by: 12/21/2021 8:12:57 AM

Marrissa Williams, Project Manager (717)556-7246

Marrissa.Williams@eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

5

6

8

9

10

11

Laboratory Job ID: 410-67026-1

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.
- · Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

 Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental and (B) whether Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Marrissa Williams

Marrissa Williams Project Manager 12/21/2021 8:12:57 AM

4

5

6

9

10

11

Case Narrative

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Job ID: 410-67026-1

Job ID: 410-67026-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-67026-1

Receipt

The samples were received on 12/15/2021 9:37 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 13.8°C

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: P968398-PH9398 1600846-tw2 (410-67026-1), P968398-PH9398 1600847-tw3 (410-67026-2), P968398-PH9398 1600848-BH1 (410-67026-3) and P968398-PH9398 1600848-BH2 (410-67026-4). The laboratory was instructed to proceed with analysis.

Any peak area that is the result of interferences from poly-chlorinated diphenyl ethers observed in the sample has been removed from the calculated results prior to reporting the data for totals.

Dioxin

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Job ID: 410-67026-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-67026-1	P968398-PH9398 1600846-tw2	Water	12/08/21 00:00	12/15/21 09:37
410-67026-2	P968398-PH9398 1600847-tw3	Water	12/08/21 00:00	12/15/21 09:37
410-67026-3	P968398-PH9398 1600848-BH1	Water	12/08/21 00:00	12/15/21 09:37
410-67026-4	P968398-PH9398 1600848-BH2	Water	12/08/21 00:00	12/15/21 09:37

20 1

3

4

6

10

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Client Sample ID: P968398-PH9398 1600846-tw2

Date Collected: 12/08/21 00:00

Date Received: 12/15/21 09:37

Job ID: 410-67026-1

Lab Sample ID: 410-67026-1

Matrix: Water

ter

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	ND		31	0.31	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,4,6,7,8-HpCDF	0.37	JI	31	0.029	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,4,7,8-HxCDD	ND		31	0.048	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,4,7,8-HxCDF	0.48	JIB	31	0.16	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,4,7,8,9-HpCDF	ND		31	0.043	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,6,7,8-HxCDD	0.23	JIB	31	0.046	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,6,7,8-HxCDF	ND		31	0.15	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,7,8-PeCDD	ND		31	0.075	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,7,8-PeCDF	0.56	JIB	31	0.10	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,7,8,9-HxCDD	0.26	JI	31	0.043	pg/L		12/16/21 15:00	12/17/21 14:59	1
1,2,3,7,8,9-HxCDF	0.54	JIB	31	0.18	pg/L		12/16/21 15:00	12/17/21 14:59	1
2,3,4,6,7,8-HxCDF	ND		31	0.14	pg/L		12/16/21 15:00	12/17/21 14:59	1
2,3,4,7,8-PeCDF	ND		31	0.083	pg/L		12/16/21 15:00	12/17/21 14:59	1
2,3,7,8-TCDD	0.19	JI	5.0	0.10	pg/L		12/16/21 15:00	12/17/21 14:59	1
2,3,7,8-TCDF	ND		6.2	0.051	pg/L		12/16/21 15:00	12/17/21 14:59	1
OCDD	2.5	JIB	140	0.075	pg/L		12/16/21 15:00	12/17/21 14:59	1
OCDF	ND		62	0.071	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total HpCDD	ND		31	0.31	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total HpCDF	0.37	JIB	31	0.036	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total HxCDD	1.2	JIB	31	0.046	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total HxCDF	1.0	JIB	31	0.16	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total PeCDD	0.64	JB	31	0.075	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total PeCDF	0.91	JIB	31	0.091	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total TCDD	0.19	JIB	6.2	0.10	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total TCDF	0.59	JIB	6.2	0.051	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total PCDD	4.5	JIB	6.2	0.12	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total PCDF	2.9	JIB	6.2	0.082	pg/L		12/16/21 15:00	12/17/21 14:59	1
Total PCDD/PCDF	7.4	1	6.2	0.10	pg/L		12/16/21 15:00	12/17/21 14:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	68		23 - 140				12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,4,6,7,8-HpCDF	64		28 - 143				12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,4,7,8-HxCDD	70		32 - 141				12/16/21 15:00	12/17/21 14:59	1

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	68		23 - 140	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,4,6,7,8-HpCDF	64		28 - 143	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,4,7,8-HxCDD	70		32 - 141	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,4,7,8-HxCDF	71		26 - 152	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,4,7,8,9-HpCDF	57		26 - 138	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,6,7,8-HxCDD	71		28 - 130	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,6,7,8-HxCDF	72		26 - 123	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,7,8-PeCDD	59		25 - 181	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,7,8-PeCDF	64		24 - 185	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,7,8,9-HxCDD	71		28 - 130	12/16/21 15:00	12/17/21 14:59	1
13C-1,2,3,7,8,9-HxCDF	63		29 - 147	12/16/21 15:00	12/17/21 14:59	1
13C-2,3,4,6,7,8-HxCDF	68		28 - 136	12/16/21 15:00	12/17/21 14:59	1
13C-2,3,4,7,8-PeCDF	63		21 - 178	12/16/21 15:00	12/17/21 14:59	1
13C-2,3,7,8-TCDD	67		25 - 164	12/16/21 15:00	12/17/21 14:59	1
13C-2,3,7,8-TCDF	64		24 - 169	12/16/21 15:00	12/17/21 14:59	1
13C-OCDD	69		17 _ 157	12/16/21 15:00	12/17/21 14:59	1
13C-OCDF	59		17 - 157	12/16/21 15:00	12/17/21 14:59	1

RL

EDL Unit

D

Prepared

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Client Sample ID: P968398-PH9398 1600847-tw3

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Date Collected: 12/08/21 00:00

Date Received: 12/15/21 09:37

13C-OCDF

Job ID: 410-67026-1

Lab Sample ID: 410-67026-2

Analyzed

Matrix: Water

Dil Fac

5

7

9

10

•						-	•	
1,2,3,4,6,7,8-HpCDD	1.3	JIB	26	0.060	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,4,6,7,8-HpCDF	ND		26	0.025	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,4,7,8-HxCDD	ND		26	0.042	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,4,7,8-HxCDF	ND		26	0.026	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,4,7,8,9-HpCDF	ND		26	0.036	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,6,7,8-HxCDD	ND		26	0.038	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,6,7,8-HxCDF	ND		26	0.027	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,7,8-PeCDD	ND		26	0.092	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,7,8-PeCDF	0.51	JIB	26	0.049	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,7,8,9-HxCDD	ND		26	0.037	pg/L	12/16/21 15:00	12/17/21 15:51	1
1,2,3,7,8,9-HxCDF	ND		26	0.033	pg/L	12/16/21 15:00	12/17/21 15:51	1
2,3,4,6,7,8-HxCDF	ND		26	0.026	pg/L	12/16/21 15:00	12/17/21 15:51	1
2,3,4,7,8-PeCDF	ND		26	0.037	pg/L	12/16/21 15:00	12/17/21 15:51	1
2,3,7,8-TCDD	0.13	JI	4.1	0.078	pg/L	12/16/21 15:00	12/17/21 15:51	1
2,3,7,8-TCDF	ND		5.2	0.054	pg/L	12/16/21 15:00	12/17/21 15:51	1
OCDD	ND		110	0.060	pg/L	12/16/21 15:00	12/17/21 15:51	1
OCDF	0.087	JIB	52	0.057	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total HpCDD	1.3	JIB	26	0.060	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total HpCDF	ND		26	0.036	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total HxCDD	1.8	JIB	26	0.039	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total HxCDF	ND		26	0.033	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total PeCDD	0.93	JIB	26	0.092	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total PeCDF	0.51	JIB	26	0.043	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total TCDD	1.3	JIB	5.2	0.078	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total TCDF	0.17	JIB	5.2	0.054	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total PCDD	5.3	I B	5.2	0.066	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total PCDF	0.77	JIB	5.2	0.044	pg/L	12/16/21 15:00	12/17/21 15:51	1
Total PCDD/PCDF	6.1	I	5.2	0.055	pg/L	12/16/21 15:00	12/17/21 15:51	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	68		23 - 140			12/16/21 15:00	12/17/21 15:51	
13C-1,2,3,4,6,7,8-HpCDF	67		28 - 143			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,4,7,8-HxCDD	70		32 - 141			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,4,7,8-HxCDF	68		26 - 152			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,4,7,8,9-HpCDF	61		26 - 138			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,6,7,8-HxCDD	74		28 - 130			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,6,7,8-HxCDF	72		26 - 123			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,7,8-PeCDD	60		25 - 181			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,7,8-PeCDF	62		24 - 185			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,7,8,9-HxCDD	70		28 - 130			12/16/21 15:00	12/17/21 15:51	1
13C-1,2,3,7,8,9-HxCDF	63		29 - 147			12/16/21 15:00	12/17/21 15:51	1
13C-2,3,4,6,7,8-HxCDF			28 - 136			12/16/21 15:00	12/17/21 15:51	1
	68		20 - 100					
13C-2,3,4,7,8-PeCDF	68		21 - 178			12/16/21 15:00	12/17/21 15:51	1
13C-2,3,4,7,8-PeCDF 13C-2,3,7,8-TCDD						12/16/21 15:00 12/16/21 15:00	12/17/21 15:51 12/17/21 15:51	1 1
	62		21 - 178					

12/16/21 15:00 12/17/21 15:51

17 - 157

RL

32

EDL Unit

0.31 pg/L

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Client Sample ID: P968398-PH9398 1600848-BH1

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Date Collected: 12/08/21 00:00

Result Qualifier

1.9 JIB

Date Received: 12/15/21 09:37

1,2,3,4,6,7,8-HpCDD

Job ID: 410-67026-1

Lab Sample ID: 410-67026-3

Analyzed

12/17/21 16:40

Prepared

12/16/21 15:00

Matrix: Water

iter	

Dil Fac

10

4.6

1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD	0.25 0.66		32	0.034 0.052		12/16/21 15:00	12/17/21 16:40 12/17/21 16:40	1
1,2,3,4,7,8-HxCDF	ND		32	0.12	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,4,7,8,9-HpCDF	ND		32	0.050	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,6,7,8-HxCDD	ND		32	0.053	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,6,7,8-HxCDF	0.41	JIB	32	0.12	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,7,8-PeCDD	ND		32	0.087	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,7,8-PeCDF	0.34	JIB	32	0.062	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,7,8,9-HxCDD	ND		32	0.052	pg/L	12/16/21 15:00	12/17/21 16:40	1
1,2,3,7,8,9-HxCDF	0.42	JIB	32	0.13	pg/L	12/16/21 15:00	12/17/21 16:40	1
2,3,4,6,7,8-HxCDF	ND		32	0.12	pg/L	12/16/21 15:00	12/17/21 16:40	1
2,3,4,7,8-PeCDF	ND		32	0.050	pg/L	12/16/21 15:00	12/17/21 16:40	1
2,3,7,8-TCDD	ND		5.1	0.10	pg/L	12/16/21 15:00	12/17/21 16:40	1
2,3,7,8-TCDF	ND		6.4	0.070	pg/L	12/16/21 15:00	12/17/21 16:40	1
OCDD	14	JB	140	0.086	pg/L	12/16/21 15:00	12/17/21 16:40	1
OCDF	0.82	JIB	64	0.078	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total HpCDD	1.9	JIB	32	0.31	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total HpCDF	0.42	JIB	32	0.042	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total HxCDD	3.8	JIB	32	0.052	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total HxCDF	0.83	JIB	32	0.12	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total PeCDD	0.38	JB	32	0.087	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total PeCDF	0.34	JIB	32	0.056	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total TCDD	0.13	JIB	6.4	0.10	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total TCDF	ND		6.4	0.070	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total PCDD	20	I B	6.4	0.13	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total PCDF	2.4	JIB	6.4	0.074	pg/L	12/16/21 15:00	12/17/21 16:40	1
Total PCDD/PCDF	22	I	6.4	0.10	pg/L	12/16/21 15:00	12/17/21 16:40	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	58		23 - 140			12/16/21 15:00	12/17/21 16:40	1
13C-1,2,3,4,6,7,8-HpCDF	56		28 - 143			12/16/21 15:00	12/17/21 16:40	1
13C-1,2,3,4,7,8-HxCDD	60		32 - 141			12/16/21 15:00	12/17/21 16:40	1
13C-1,2,3,4,7,8-HxCDF	60		26 - 152			12/16/21 15:00	12/17/21 16:40	1
13C-1,2,3,4,7,8,9-HpCDF			26 - 138			12/16/21 15:00	12/17/21 16:40	1
	51		20 - 130					1
13C-1,2,3,6,7,8-HxCDD	51 64		28 - 130			12/16/21 15:00	12/17/21 16:40	
						12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40	1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD	64		28 - 130					1
13C-1,2,3,6,7,8-HxCDF	64		28 - 130 26 - 123			12/16/21 15:00	12/17/21 16:40	
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD	64 61 51		28 - 130 26 - 123 25 - 181			12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40	1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF	64 61 51 53		28 - 130 26 - 123 25 - 181 24 - 185			12/16/21 15:00 12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40 12/17/21 16:40	1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDF	64 61 51 53 61		28 - 130 26 - 123 25 - 181 24 - 185 28 - 130			12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40	1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	64 61 51 53 61		28 - 130 26 - 123 25 - 181 24 - 185 28 - 130 29 - 147			12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40	1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,7,8-PeCDF	64 61 51 53 61 55 59		28 - 130 26 - 123 25 - 181 24 - 185 28 - 130 29 - 147 28 - 136			12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40	1 1 1 1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,7,8-TCDD	64 61 51 53 61 55 59		28 - 130 26 - 123 25 - 181 24 - 185 28 - 130 29 - 147 28 - 136 21 - 178			12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40	1 1 1 1 1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8,9-HxCDD	64 61 51 53 61 55 59 54 54		28 - 130 26 - 123 25 - 181 24 - 185 28 - 130 29 - 147 28 - 136 21 - 178 25 - 164			12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00 12/16/21 15:00	12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40 12/17/21 16:40	1 1 1 1 1

RL

EDL Unit

D

Prepared

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Client Sample ID: P968398-PH9398 1600848-BH2

Date Collected: 12/08/21 00:00

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Result Qualifier

Date Received: 12/15/21 09:37

13C-2,3,7,8-TCDF

13C-OCDD

13C-OCDF

Job ID: 410-67026-1

Lab Sample ID: 410-67026-4

Analyzed

Matrix: Water

Dil Fac

5

7

9

10

12

Allalyte	Result	Qualifier	NL.	EDL	Ollit	D	riepaieu	Allalyzeu	Dil Fac
1,2,3,4,6,7,8-HpCDD	1.8	JIB	26	0.21	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,4,6,7,8-HpCDF	0.24	JI	26	0.028	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,4,7,8-HxCDD	ND		26	0.046	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,4,7,8-HxCDF	ND		26	0.12	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,4,7,8,9-HpCDF	ND		26	0.037	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,6,7,8-HxCDD	ND		26	0.041	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,6,7,8-HxCDF	0.27	JIB	26	0.12	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,7,8-PeCDD	ND		26	0.11	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,7,8-PeCDF	0.40	JIB	26	0.050	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,7,8,9-HxCDD	0.38	JI	26	0.043	pg/L		12/16/21 15:00	12/17/21 17:29	1
1,2,3,7,8,9-HxCDF	0.54	JIB	26	0.14	pg/L		12/16/21 15:00	12/17/21 17:29	1
2,3,4,6,7,8-HxCDF	ND		26	0.11	pg/L		12/16/21 15:00	12/17/21 17:29	1
2,3,4,7,8-PeCDF	0.37	JIB	26	0.042	pg/L		12/16/21 15:00	12/17/21 17:29	1
2,3,7,8-TCDD	ND		4.2	0.086	pg/L		12/16/21 15:00	12/17/21 17:29	1
2,3,7,8-TCDF	ND		5.3	0.055	pg/L		12/16/21 15:00	12/17/21 17:29	1
OCDD	1.4	JIB	120	0.090	pg/L		12/16/21 15:00	12/17/21 17:29	1
OCDF	ND		53	0.082	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total HpCDD	1.8	JIB	26	0.21	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total HpCDF	0.47	JIB	26	0.033	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total HxCDD	0.88	JIB	26	0.044	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total HxCDF	0.82	JIB	26	0.12	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total PeCDD	0.65	JIB	26	0.11	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total PeCDF	0.77	JIB	26	0.046	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total TCDD	1.1	JIB	5.3	0.086	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total TCDF	0.14	JIB	5.3	0.055	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total PCDD	5.8	IB	5.3	0.11	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total PCDF	2.2	JIB	5.3	0.067	pg/L		12/16/21 15:00	12/17/21 17:29	1
Total PCDD/PCDF	8.0	1	5.3	0.087	pg/L		12/16/21 15:00	12/17/21 17:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	52		23 - 140				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,4,6,7,8-HpCDF	50		28 - 143				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,4,7,8-HxCDD	54		32 - 141				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,4,7,8-HxCDF	54		26 - 152				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,4,7,8,9-HpCDF	48		26 - 138				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,6,7,8-HxCDD	57		28 - 130				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,6,7,8-HxCDF	54		26 - 123				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,7,8-PeCDD	45		25 - 181				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,7,8-PeCDF	52		24 - 185				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,7,8,9-HxCDD	53		28 - 130				12/16/21 15:00	12/17/21 17:29	1
13C-1,2,3,7,8,9-HxCDF	49		29 - 147				12/16/21 15:00	12/17/21 17:29	1
13C-2,3,4,6,7,8-HxCDF	51		28 - 136				12/16/21 15:00	12/17/21 17:29	1
13C-2,3,4,7,8-PeCDF	49		21 - 178				12/16/21 15:00	12/17/21 17:29	1
13C-2,3,7,8-TCDD	50		25 - 164				12/16/21 15:00	12/17/21 17:29	1

12/16/21 15:00 12/17/21 17:29

12/16/21 15:00 12/17/21 17:29

12/16/21 15:00 12/17/21 17:29

24 - 169

17 - 157

17 - 157

51

60

Job ID: 410-67026-1

Client: Eurofins Environment Testing Canada Project/Site: P968398-PH9398

Client Sample ID: P968398-PH9398 1600846-tw2

Lab Sample ID: 410-67026-1

						WHO 20	005	
						ND =	0	
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
1,2,3,4,6,7,8-HpCDD	ND		31	0.31	pg/L	0.01	0.00	1613B
1,2,3,4,6,7,8-HpCDF	0.37	JI	31	0.029	pg/L	0.01	0.0037	1613B
1,2,3,4,7,8-HxCDD	ND		31	0.048	pg/L	0.1	0.00	1613B
1,2,3,4,7,8-HxCDF	0.48	JIB	31	0.16	pg/L	0.1	0.048	1613B
1,2,3,4,7,8,9-HpCDF	ND		31	0.043	pg/L	0.01	0.00	1613B
1,2,3,6,7,8-HxCDD	0.23	JIB	31	0.046	pg/L	0.1	0.023	1613B
1,2,3,6,7,8-HxCDF	ND		31	0.15	pg/L	0.1	0.00	1613B
1,2,3,7,8-PeCDD	ND		31	0.075	pg/L	1	0.00	1613B
1,2,3,7,8-PeCDF	0.56	JIB	31	0.10	pg/L	0.03	0.017	1613B
1,2,3,7,8,9-HxCDD	0.26	JI	31	0.043	pg/L	0.1	0.026	1613B
1,2,3,7,8,9-HxCDF	0.54	JIB	31	0.18	pg/L	0.1	0.054	1613B
2,3,4,6,7,8-HxCDF	ND		31	0.14	pg/L	0.1	0.00	1613B
2,3,4,7,8-PeCDF	ND		31	0.083	pg/L	0.3	0.00	1613B
2,3,7,8-TCDD	0.19	JI	5.0	0.10	pg/L	1	0.19	1613B
2,3,7,8-TCDF	ND		6.2	0.051	pg/L	0.1	0.00	1613B
OCDD	2.5	JIB	140	0.075	pg/L	0.0003	0.00075	1613B
OCDF	ND		62	0.071	pg/L	0.0003	0.00	1613B
						WHO 20	005	
						ND =	0	
Analyte	Result	Qualifier	NONE	NONE	Unit	TEF	TEQ	Method
Total Toxic Dioxins and Furans					pg/L		0.36	TEQ

Client Sample ID: P968398-PH9398 1600847-tw3

Lab Sample ID: 410-67026-2

						WHO 2	2005	
						ND = 0		
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
1,2,3,4,6,7,8-HpCDD	1.3	JIB	26	0.060	pg/L	0.01	0.013	1613B
1,2,3,4,6,7,8-HpCDF	ND		26	0.025	pg/L	0.01	0.00	1613B
1,2,3,4,7,8-HxCDD	ND		26	0.042	pg/L	0.1	0.00	1613B
1,2,3,4,7,8-HxCDF	ND		26	0.026	pg/L	0.1	0.00	1613B
1,2,3,4,7,8,9-HpCDF	ND		26	0.036	pg/L	0.01	0.00	1613B
1,2,3,6,7,8-HxCDD	ND		26	0.038	pg/L	0.1	0.00	1613B
1,2,3,6,7,8-HxCDF	ND		26	0.027	pg/L	0.1	0.00	1613B
1,2,3,7,8-PeCDD	ND		26	0.092	pg/L	1	0.00	1613B
1,2,3,7,8-PeCDF	0.51	JIB	26	0.049	pg/L	0.03	0.015	1613B
1,2,3,7,8,9-HxCDD	ND		26	0.037	pg/L	0.1	0.00	1613B
1,2,3,7,8,9-HxCDF	ND		26	0.033	pg/L	0.1	0.00	1613B
2,3,4,6,7,8-HxCDF	ND		26	0.026	pg/L	0.1	0.00	1613B
2,3,4,7,8-PeCDF	ND		26	0.037	pg/L	0.3	0.00	1613B
2,3,7,8-TCDD	0.13	JI	4.1	0.078	pg/L	1	0.13	1613B
2,3,7,8-TCDF	ND		5.2	0.054	pg/L	0.1	0.00	1613B
OCDD	ND		110	0.060	pg/L	0.0003	0.00	1613B
OCDF	0.087	JIB	52	0.057	pg/L	0.0003	0.000026	1613B

TEF Reference:

WHO 2005 = World Health Organization (WHO) 2005 TEF, Dioxins, Furans and PCB Congeners

Eurofins Lancaster Laboratories Env, LLC

Page 9 of 22

9

7

Ö

40

11

12

12/21/2021

Job ID: 410-67026-1

Project/Site: P968398-PH9398

Client: Eurofins Environment Testing Canada

Client Sample ID: P968398-PH9398 1600847-tw3 (Continued)

Lab Sample ID: 410-67026-2

						WHO 2005		
						ND = 0		
Analyte	Result	Qualifier	NONE	NONE	Unit	TEF	TEQ	Method
Total Toxic Dioxins and Furans					pg/L		0.16	TEQ

Client Sample ID: P968398-PH9398 1600848-BH1

Lab Sample ID: 410-67026-3

						WHO 20		
						ND =	0	
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
1,2,3,4,6,7,8-HpCDD	1.9	JIB	32	0.31	pg/L	0.01	0.019	1613B
1,2,3,4,6,7,8-HpCDF	0.25	JI	32	0.034	pg/L	0.01	0.0025	1613B
1,2,3,4,7,8-HxCDD	0.66	JI	32	0.052	pg/L	0.1	0.066	1613B
1,2,3,4,7,8-HxCDF	ND		32	0.12	pg/L	0.1	0.00	1613B
1,2,3,4,7,8,9-HpCDF	ND		32	0.050	pg/L	0.01	0.00	1613B
1,2,3,6,7,8-HxCDD	ND		32	0.053	pg/L	0.1	0.00	1613B
1,2,3,6,7,8-HxCDF	0.41	JIB	32	0.12	pg/L	0.1	0.041	1613B
1,2,3,7,8-PeCDD	ND		32	0.087	pg/L	1	0.00	1613B
1,2,3,7,8-PeCDF	0.34	JIB	32	0.062	pg/L	0.03	0.010	1613B
1,2,3,7,8,9-HxCDD	ND		32	0.052	pg/L	0.1	0.00	1613B
1,2,3,7,8,9-HxCDF	0.42	JIB	32	0.13	pg/L	0.1	0.042	1613B
2,3,4,6,7,8-HxCDF	ND		32	0.12	pg/L	0.1	0.00	1613B
2,3,4,7,8-PeCDF	ND		32	0.050	pg/L	0.3	0.00	1613B
2,3,7,8-TCDD	ND		5.1	0.10	pg/L	1	0.00	1613B
2,3,7,8-TCDF	ND		6.4	0.070	pg/L	0.1	0.00	1613B
OCDD	14	JB	140	0.086	pg/L	0.0003	0.0042	1613B
OCDF	0.82	JIB	64	0.078	pg/L	0.0003	0.00025	1613B
						WHO 20	005	
						ND =	0	
Analyte	Result	Qualifier	NONE	NONE	Unit	TEF	TEQ	Method
Total Toxic Dioxins and Furans					pg/L		0.18	TEQ

Client Sample ID: P968398-PH9398 1600848-BH2

Lab Sample ID: 410-67026-4

						WHO 20	05	
						ND = 0		
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
1,2,3,4,6,7,8-HpCDD	1.8	JIB	26	0.21	pg/L	0.01	0.018	1613B
1,2,3,4,6,7,8-HpCDF	0.24	JI	26	0.028	pg/L	0.01	0.0024	1613B
1,2,3,4,7,8-HxCDD	ND		26	0.046	pg/L	0.1	0.00	1613B
1,2,3,4,7,8-HxCDF	ND		26	0.12	pg/L	0.1	0.00	1613B
1,2,3,4,7,8,9-HpCDF	ND		26	0.037	pg/L	0.01	0.00	1613B
1,2,3,6,7,8-HxCDD	ND		26	0.041	pg/L	0.1	0.00	1613B
1,2,3,6,7,8-HxCDF	0.27	JIB	26	0.12	pg/L	0.1	0.027	1613B
1,2,3,7,8-PeCDD	ND		26	0.11	pg/L	1	0.00	1613B
1,2,3,7,8-PeCDF	0.40	JIB	26	0.050	pg/L	0.03	0.012	1613B
1,2,3,7,8,9-HxCDD	0.38	JI	26	0.043	pg/L	0.1	0.038	1613B
1,2,3,7,8,9-HxCDF	0.54	JIB	26	0.14	pg/L	0.1	0.054	1613B
2,3,4,6,7,8-HxCDF	ND		26	0.11	pg/L	0.1	0.00	1613B

TEF Reference:

WHO 2005 = World Health Organization (WHO) 2005 TEF, Dioxins, Furans and PCB Congeners

Eurofins Lancaster Laboratories Env, LLC

Toxicity Summary

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Job ID: 410-67026-1

Client Sample ID: P968398-PH9398 1600848-BH2 (Continued)

Lab Sample ID: 410-67026-4

						WHO 20	005	
						ND =	0	
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
2,3,4,7,8-PeCDF	0.37	JIB	26	0.042	pg/L	0.3	0.11	1613B
2,3,7,8-TCDD	ND		4.2	0.086	pg/L	1	0.00	1613B
2,3,7,8-TCDF	ND		5.3	0.055	pg/L	0.1	0.00	1613B
OCDD	1.4	JIB	120	0.090	pg/L	0.0003	0.00042	1613B
OCDF	ND		53	0.082	pg/L	0.0003	0.00	1613B
•						WHO 20	005	
						ND =	0	
Analyte	Result	Qualifier	NONE	NONE	Unit	TEF	TEQ	Method
Total Toxic Dioxins and Furans	· 				pg/L		0.26	TEQ

TEF Reference:

WHO 2005 = World Health Organization (WHO) 2005 TEF, Dioxins, Furans and PCB Congeners

Project/Site: P968398-PH9398

Job ID: 410-67026-1

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Lab Sample ID: MB 410-206460/1-A

Matrix: Water

Analysis Batch: 206661

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 206460

,	МВ	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	2.21	JI	25	0.29	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,4,6,7,8-HpCDF	ND		25	0.028	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,4,7,8-HxCDD	ND		25	0.047	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,4,7,8-HxCDF	0.713	JI	25	0.071	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,4,7,8,9-HpCDF	0.526	J	25	0.040	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,6,7,8-HxCDD	0.388	JI	25	0.044	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,6,7,8-HxCDF	0.267	JI	25	0.073	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,7,8-PeCDD	0.495	JI	25	0.076	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,7,8-PeCDF	0.763	JI	25	0.071	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,7,8,9-HxCDD	ND		25	0.049	pg/L		12/16/21 15:00	12/17/21 14:11	1
1,2,3,7,8,9-HxCDF	0.907	J	25	0.090	pg/L		12/16/21 15:00	12/17/21 14:11	1
2,3,4,6,7,8-HxCDF	0.647	JI	25	0.079	pg/L		12/16/21 15:00	12/17/21 14:11	1
2,3,4,7,8-PeCDF	0.426	JI	25	0.065	pg/L		12/16/21 15:00	12/17/21 14:11	1
2,3,7,8-TCDD	ND		4.0	0.13	pg/L		12/16/21 15:00	12/17/21 14:11	1
2,3,7,8-TCDF	0.138	JI	5.0	0.059	pg/L		12/16/21 15:00	12/17/21 14:11	1
OCDD	1.54	JI	110	0.076	pg/L		12/16/21 15:00	12/17/21 14:11	1
OCDF	0.984	JI	50	0.063	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total HpCDD	2.21	JI	25	0.29	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total HpCDF	0.526	J	25	0.034	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total HxCDD	1.35	JI	25	0.047	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total HxCDF	2.91	JI	25	0.078	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total PeCDD	0.495	JI	25	0.076	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total PeCDF	1.60	JI	25	0.068	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total TCDD	0.923	JI	5.0	0.13	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total TCDF	0.733	JI	5.0	0.059	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total PCDD	6.52	1	5.0	0.12	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total PCDF	6.75	1	5.0	0.060	pg/L		12/16/21 15:00	12/17/21 14:11	1
Total PCDD/PCDF	ND		5.0	0.092	pg/L		12/16/21 15:00	12/17/21 14:11	1
	MB	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	62		23 - 140				12/16/21 15:00	12/17/21 14:11	1
13C-1 2 3 4 6 7 8-HnCDF	66		28 143				12/16/21 15:00	19/17/21 14:11	1

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	62		23 - 140	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,4,6,7,8-HpCDF	66		28 - 143	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,4,7,8-HxCDD	65		32 - 141	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,4,7,8-HxCDF	67		26 - 152	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,4,7,8,9-HpCDF	59		26 - 138	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,6,7,8-HxCDD	68		28 - 130	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,6,7,8-HxCDF	70		26 - 123	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,7,8-PeCDD	53		25 - 181	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,7,8-PeCDF	62		24 - 185	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,7,8,9-HxCDD	59		28 - 130	12/16/21 15:00	12/17/21 14:11	1
13C-1,2,3,7,8,9-HxCDF	57		29 - 147	12/16/21 15:00	12/17/21 14:11	1
13C-2,3,4,6,7,8-HxCDF	56		28 - 136	12/16/21 15:00	12/17/21 14:11	1
13C-2,3,4,7,8-PeCDF	54		21 - 178	12/16/21 15:00	12/17/21 14:11	1
13C-2,3,7,8-TCDD	56		25 - 164	12/16/21 15:00	12/17/21 14:11	1
13C-2,3,7,8-TCDF	55		24 - 169	12/16/21 15:00	12/17/21 14:11	1
13C-OCDD	67		17 - 157	12/16/21 15:00	12/17/21 14:11	1
13C-OCDF	60		17 _ 157	12/16/21 15:00	12/17/21 14:11	1

Eurofins Lancaster Laboratories Env, LLC

Page 12 of 22

1

2

10

Job ID: 410-67026-1

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters) (Continued)

Lab Sample ID: LCS 410-206460/2-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 206661	Prep Batch: 206460

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,4,6,7,8-HpCDD	1000	987		pg/L		99	70 - 140	
1,2,3,4,6,7,8-HpCDF	1000	951		pg/L		95	82 _ 122	
1,2,3,4,7,8-HxCDD	1000	1000		pg/L		100	70 - 164	
1,2,3,4,7,8-HxCDF	1000	944		pg/L		94	72 ₋ 134	
1,2,3,4,7,8,9-HpCDF	1000	989		pg/L		99	78 ₋ 138	
1,2,3,6,7,8-HxCDD	1000	955		pg/L		96	76 - 134	
1,2,3,6,7,8-HxCDF	1000	954		pg/L		95	84 - 130	
1,2,3,7,8-PeCDD	1000	1080		pg/L		108	70 - 142	
1,2,3,7,8-PeCDF	1000	1050		pg/L		105	80 _ 134	
1,2,3,7,8,9-HxCDD	1000	963		pg/L		96	64 - 162	
1,2,3,7,8,9-HxCDF	1000	975		pg/L		97	78 - 130	
2,3,4,6,7,8-HxCDF	1000	956		pg/L		96	70 - 156	
2,3,4,7,8-PeCDF	1000	1030		pg/L		103	68 - 160	
2,3,7,8-TCDD	200	176		pg/L		88	67 _ 158	
2,3,7,8-TCDF	200	203		pg/L		101	75 ₋ 158	
OCDD	2000	1950		pg/L		98	78 - 144	
OCDF	2000	1990		pg/L		99	63 _ 170	

005.			2000	.000
	LCS	LCS		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C-1,2,3,4,6,7,8-HpCDD	70		26 - 166	
13C-1,2,3,4,6,7,8-HpCDF	69		21 - 158	
13C-1,2,3,4,7,8-HxCDD	69		21 - 193	
13C-1,2,3,4,7,8-HxCDF	78		19 - 202	
13C-1,2,3,4,7,8,9-HpCDF	63		20 - 186	
13C-1,2,3,6,7,8-HxCDD	73		25 - 163	
13C-1,2,3,6,7,8-HxCDF	81		21 - 159	
13C-1,2,3,7,8-PeCDD	64		21 - 227	
13C-1,2,3,7,8-PeCDF	83		21 - 192	
13C-1,2,3,7,8,9-HxCDD	73		25 - 163	
13C-1,2,3,7,8,9-HxCDF	67		17 - 205	
13C-2,3,4,6,7,8-HxCDF	74		22 - 176	
13C-2,3,4,7,8-PeCDF	71		13 - 328	
13C-2,3,7,8-TCDD	71		20 - 175	
13C-2,3,7,8-TCDF	72		22 - 152	
13C-OCDD	76		13 - 199	
13C-OCDF	67		13 - 199	

QC Association Summary

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Specialty Organics

Prep Batch: 206460

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
410-67026-1	P968398-PH9398 1600846-tw2	Total/NA	Water	1613B	
410-67026-2	P968398-PH9398 1600847-tw3	Total/NA	Water	1613B	
410-67026-3	P968398-PH9398 1600848-BH1	Total/NA	Water	1613B	
410-67026-4	P968398-PH9398 1600848-BH2	Total/NA	Water	1613B	
MB 410-206460/1-A	Method Blank	Total/NA	Water	1613B	
LCS 410-206460/2-A	Lab Control Sample	Total/NA	Water	1613B	

Analysis Batch: 206661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-67026-1	P968398-PH9398 1600846-tw2	Total/NA	Water	1613B	206460
410-67026-2	P968398-PH9398 1600847-tw3	Total/NA	Water	1613B	206460
410-67026-3	P968398-PH9398 1600848-BH1	Total/NA	Water	1613B	206460
410-67026-4	P968398-PH9398 1600848-BH2	Total/NA	Water	1613B	206460
MB 410-206460/1-A	Method Blank	Total/NA	Water	1613B	206460
LCS 410-206460/2-A	Lab Control Sample	Total/NA	Water	1613B	206460

Job ID: 410-67026-1

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Date Received: 12/15/21 09:37

Client Sample ID: P968398-PH9398 1600846-tw2

Date Collected: 12/08/21 00:00

Lab Sample ID: 410-67026-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1613B			206460	12/16/21 15:00	CPV9	ELLE
Total/NA	Analysis	1613B		1	206661	12/17/21 14:59	UA2A	ELLE

Client Sample ID: P968398-PH9398 1600847-tw3

Lab Sample ID: 410-67026-2

Matrix: Water

Date Collected: 12/08/21 00:00 Date Received: 12/15/21 09:37

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1613B			206460	12/16/21 15:00	CPV9	ELLE
Total/NA	Analysis	1613B		1	206661	12/17/21 15:51	UA2A	ELLE

Client Sample ID: P968398-PH9398 1600848-BH1

Lab Sample ID: 410-67026-3

Matrix: Water

Date Collected: 12/08/21 00:00 Date Received: 12/15/21 09:37

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1613B			206460	12/16/21 15:00	CPV9	ELLE
Total/NA	Analysis	1613B		1	206661	12/17/21 16:40	UA2A	ELLE

Client Sample ID: P968398-PH9398 1600848-BH2

1613B

Analysis

Lab Sample ID: 410-67026-4

Matrix: Water

Date Collected: 12/08/21 00:00 Date Received: 12/15/21 09:37

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Prep 1613B 206460 12/16/21 15:00 CPV9 **ELLE**

1

206661

12/17/21 17:29

UA2A

ELLE

Laboratory References:

Total/NA

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Project/Site: P968398-PH9398

Client: Eurofins Environment Testing Canada

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

P968398-PH9398 1600847-tw3

P968398-PH9398 1600848-BH1

P968398-PH9398 1600848-BH2

Method Blank

Matrix: Water Prep Type: Total/NA

			Pe	ercent Isotop	e Dilution Re	covery (Acce	eptance Limi	ts)	
		HpCDD	HpCDF	HxCDD	HxCDF	HpCDF2	HxDD	HxDF	PeCDD
Lab Sample ID	Client Sample ID	(23-140)	(28-143)	(32-141)	(26-152)	(26-138)	(28-130)	(26-123)	(25-181)
410-67026-1	P968398-PH9398 1600846-tw2	68	64	70	71	57	71	72	59
410-67026-2	P968398-PH9398 1600847-tw3	68	67	70	68	61	74	72	60
410-67026-3	P968398-PH9398 1600848-BH1	58	56	60	60	51	64	61	51
410-67026-4	P968398-PH9398 1600848-BH2	52	50	54	54	48	57	54	45
MB 410-206460/1-A	Method Blank	62	66	65	67	59	68	70	53
			Pe	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PeCDF	13CHxCD	HxCF	13CHxCF	PeCF	TCDD	TCDF	OCDD
Lab Sample ID	Client Sample ID	(24-185)	(28-130)	(29-147)	(28-136)	(21-178)	(25-164)	(24-169)	(17-157)
410-67026-1	P968398-PH9398 1600846-tw2	64	71	63	68	63	67	64	69
410-67026-2	P968398-PH9398 1600847-tw3	62	70	63	68	62	64	59	75
410-67026-3	P968398-PH9398 1600848-BH1	53	61	55	59	54	54	52	59
410-67026-4	P968398-PH9398 1600848-BH2	52	53	49	51	49	50	51	60
MB 410-206460/1-A	Method Blank	62	59	57	56	54	56	55	67
			Pe	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		OCDF							
Lab Sample ID	Client Sample ID	(17-157)							
410-67026-1	P968398-PH9398 1600846-tw2	59							

64

52

52

60

Surrogate Legend

MB 410-206460/1-A

410-67026-2

410-67026-3

410-67026-4

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

HxCDD = 13C-1,2,3,4,7,8-HxCDD

HxCDF = 13C-1,2,3,4,7,8-HxCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

HxDF = 13C-1,2,3,6,7,8-HxCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

13CHxCD = 13C-1,2,3,7,8,9-HxCDD

HxCF = 13C-1,2,3,7,8,9-HxCDF

13CHxCF = 13C-2,3,4,6,7,8-HxCDF

PeCF = 13C-2,3,4,7,8-PeCDF

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

OCDD = 13C-OCDD

OCDF = 13C-OCDF

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		HpCDD	HpCDF	HxCDD	HxCDF	HpCDF2	HxDD	HxDF	PeCDD
Lab Sample ID	Client Sample ID	(26-166)	(21-158)	(21-193)	(19-202)	(20-186)	(25-163)	(21-159)	(21-227)
LCS 410-206460/2-A	Lab Control Sample	70	69	69	78	63	73	81	64

Eurofins Lancaster Laboratories Env, LLC

Page 16 of 22

Job ID: 410-67026-1

12/21/2021

Isotope Dilution Summary

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Method: 1613B - 2,3,7,8-TCDD Only (Drinking Waters) (Continued)

Matrix: Water Prep Type: Total/NA

Percent Isotope Dilution Recovery (Acceptance Limits)								ts)	
		PeCDF	13CHxCD	HxCF	13CHxCF	PeCF	TCDD	TCDF	OCDD
Lab Sample ID	Client Sample ID	(21-192)	(25-163)	(17-205)	(22-176)	(13-328)	(20-175)	(22-152)	(13-199)
LCS 410-206460/2-A	Lab Control Sample	83	73	67	74	71	71	72	76
			Pe	ercent Isotop	e Dilution Re	covery (Acce	eptance Limit	ts)	
		OCDF							
Lab Sample ID	Client Sample ID	(13-199)							
LCS 410-206460/2-A	Lab Control Sample	67							

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

HxCDD = 13C-1,2,3,4,7,8-HxCDD

HxCDF = 13C-1,2,3,4,7,8-HxCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

HxDF = 13C-1,2,3,6,7,8-HxCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

13CHxCD = 13C-1,2,3,7,8,9-HxCDD

HxCF = 13C-1,2,3,7,8,9-HxCDF

13CHxCF = 13C-2,3,4,6,7,8-HxCDF

PeCF = 13C-2,3,4,7,8-PeCDF

 $\mathsf{TCDD} = \mathsf{13C-2}, \mathsf{3}, \mathsf{7}, \mathsf{8-TCDD}$

TCDF = 13C-2,3,7,8-TCDF

OCDD = 13C-OCDD

OCDF = 13C-OCDF

Eurofins Lancaster Laboratories Env, LLC

Job ID: 410-67026-1

5

6

8

9

11

Accreditation/Certification Summary

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Job ID: 410-67026-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	1.01	11-30-22
A2LA	ISO/IEC 17025	0001.01	11-30-22
Alaska	State	PA00009	06-30-22
Alaska (UST)	State	17-027	02-28-22
Arizona	State	AZ0780	03-12-22
Arkansas DEQ	State	88-0660	08-10-22
California	State	2792	02-02-22
Colorado	State	PA00009	06-30-22
Connecticut	State	PH-0746	06-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-22
Delaware (DW)	State	N/A	02-01-22
Florida	NELAP	E87997	06-30-22
Georgia (DW)	State	C048	01-31-22
Hawaii	State	N/A	01-31-22
Illinois	NELAP	200027	01-31-23
lowa	State	361	03-02-22
Kansas	NELAP	E-10151	10-31-22
Kentucky (DW)	State	KY90088	01-01-22
Kentucky (UST)	State	1.01	11-30-22
Kentucky (WW)	State	KY90088	12-31-21
Louisiana	NELAP	02055	06-30-22
Maine	State	2019012	03-12-22
Maryland	State	100	06-30-22
Massachusetts	State	M-PA009	06-30-22
Michigan	State	9930	01-31-22
Minnesota	NELAP	042-999-487	12-31-22
Missouri	State	450	01-31-25
Montana (DW)	State	0098	01-01-22
Nebraska	State	NE-OS-32-17	01-31-22
New Hampshire	NELAP	2730	01-10-22
New Jersey	NELAP	PA011	06-30-22
New York	NELAP	10670	04-01-22
North Carolina (DW)	State	42705	07-31-22
North Carolina (WW/SW)	State	521	12-31-21
North Dakota	State	R-205	01-31-22
Oklahoma	NELAP	R-205	08-31-22
Oregon	NELAP	PA200001	09-11-22
PALA	Canada	1978	09-16-24
Pennsylvania	NELAP	36-00037	01-31-22
Rhode Island	State	LAO00338	01-31-22
South Carolina	State	89002002	01-31-22
Tennessee	State	02838	01-31-22
Texas	NELAP	T104704194-21-40	08-31-22
Utah	NELAP	PA000092019-16	03-01-22
Vermont	State	VT - 36037	10-28-22
Virginia	NELAP	460182	06-14-22
Washington	State	C457	04-12-22
West Virginia (DW)	State	9906 C	12-31-21
West Virginia DEP	State	055	12-31-21
Wyoming	State	8TMS-L	01-31-22

Eurofins Lancaster Laboratories Env, LLC

3

4

8

9

10

Accreditation/Certification Summary

Client: Eurofins Environment Testing Canada

Project/Site: P968398-PH9398

Laboratory: Eurofins Lancaster Laboratories Env, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wyoming (UST)	A2LA	1.01	11-30-22

Job ID: 410-67026-1

STANDARD CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

Mill	WW		DARIO BIRAT

CLIENT INFORMATION						INVOICE INFORMATION (SAME AS CLIENT													
Company: EUTOLIOI OHTOLIO					ď.	×.	Compan	Fax: 410-67026 Chain of Custody											
Contact:							Contact: Email: #1:												
Address:							Address: Email: #2:												
Telephone: Cell:							Telephone: PO #:												
Email: #1:							REGULATION/GUIDELINE REQUIRED												
Email: #2:						1		Sanitary	Sewer, C	lity:				_		O. Re	eg 153		
Project: 4968398 - PH 4398		Quote #	:					Storm Se	wer, Cit	y:				_			esults from th		Table #, Coarse / Fine, Surface / subsurface
TURN-AROUND TIME (Busines	s Days)												Type: Com-Ind / Res-Park / Agri / GW / All Other / Sediment						
1 Day* (100%) 2 Day** (50%) 3-5 Days (25%) 5-7 Days (Standard					lard)		PWQO								list (only No			
Please contact Lab in advance to determine rush *For results reported after rush due date, surcharges will apply: befor			12:00 - 50	1%.				O.Reg 34	17							O. Reg	406 Exc	cess So	ils
•°For results reported after rush due date, surcharges will apply: before								Other: _							Та	ble #			/Strat/Ceiling/mSPLP Leachate
						E - 8										1			s-Park /Agri/All Other ace /Subsurface
The optimal temperature conditions during transport should be less than 10°C. Sample(s	Sample	Details																	
cannot be frozen, unless otherwise indicated or agreed upon with the Laboratory. Note		tered>								-4						-			RN#
that this COC is not to be used for drinking water samples. The COC must be complete upon submission of the samples, there will be a \$25 surcharge if required information is			<u> </u>	1	O.Re	g.153 par	ameters	1 9	T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	b						1 1		(Lab Use Only)
missing (required fields are shaded in grey).		er3				10.11		væan		ACKIN LOCK									
	Z a	ıta	7.					₹	out	13 K									
	Sample Matrix	# of Containers	PHC F1 - F4	BITEX	VOCs	PAHs	ğ	Metals + Inorga	Metals only	KI									
Sample ID Date/Time Collected	-		ā	<u> </u>	>_	2	7	Σ	Σ		_						 		
(600846-tw2 08 12 2071	(4)	2								-	_								
1600×47-+W3																			
1600848-BH-P										/									
1600849-RHZ	A	1								/	14								
1000					1. 3					- 35									
																			i
			,		13														
PRINT				SIGN					DATI	E/TIME		TEMP	(°C)	сомм	ENTS:				
Sampled By:				0															
Relinquished By: VOICE SCACES			X	X				15	3/12	2/25	150	10	0						
Received By: Leah Foreman				7				12	115	121	093	b ()			ODY SEAL		YES _	_	ke packs submit Yes No
401 Magnetic Drive, Unit #1, North York, ON, M3J 3H9 - Telephone:	416-661-5	287 ●	380 Van	sickle Roa	ad, Unit #	630, St. C	atharines	i, ON, L2 , 8 0)85 - T¢¶e	ephone: 9	u5-680-8	887 • 6	us Nor	ris Court,	Kingston	, ON, K71	r 2R9 - Tele	ephone:	613-634-9307

Page ____ of ____

AFSTDCOC.8

Copies: White - Laboratory, Yellow - Sampler

Login Sample Receipt Checklist

Client: Eurofins Environment Testing Canada Job Number: 410-67026-1

Login Number: 67026 List Source: Eurofins Lancaster Laboratories Env, LLC

List Number: 1

Creator: Dawodu, Habibah

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	No ice present, no attempt to chill
Cooler Temperature is acceptable (=6C, not frozen).</td <td>False</td> <td>Refer to Job Narrative for details.</td>	False	Refer to Job Narrative for details.
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time on COC or sample containers.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	

3

Δ

5

7

40

11

Definitions/Glossary

Client: Eurofins Environment Testing Canada

Job ID: 410-67026-1 Project/Site: P968398-PH9398

Qualifiers

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
1	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossarv

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group Page 1 of 8

 Report Number:
 1968225

 Date Submitted:
 2021-12-07

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 883921

Dear Kirby Magee-Dittburner:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:	
	Long Qu, Organics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

Report Number: 1968225

Date Submitted: 2021-12-07

Date Reported: 2021-12-21

Project: PH4398

COC #: 883921

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1600428 GW 2021-12-07 TW1
Group	Analyte	MRL	Units	Guideline	
Metals	Ag	0.0001	mg/L		<0.0001
	As	0.001	mg/L		<0.001
	В	0.01	mg/L		0.15
	Ва	0.01	mg/L		0.21
	Be	0.0005	mg/L		<0.0005
	Cd	0.0001	mg/L		<0.0001
	Со	0.0002	mg/L		0.0002
	Cr	0.001	mg/L		<0.001
	Cr(VI)	0.01	mg/L		<0.01
	Cu	0.001	mg/L		0.002
	Hg	0.0001	mg/L		<0.0001
	Mo	0.005	mg/L		<0.005
	Na	2	mg/L		27
	Ni	0.005	mg/L		<0.005
	Pb	0.001	mg/L		<0.001
	Sb	0.0005	mg/L		<0.0005
	Se	0.001	mg/L		<0.001
	TI	0.0001	mg/L		<0.0001
	U	0.001	mg/L		0.002
	V	0.001	mg/L		<0.001
	Zn	0.01	mg/L		<0.01
PAH	1+2-methylnaphthalene	0.1	ug/L		<0.1
	1-methylnaphthalene	0.1	ug/L		<0.1
	2-methylnaphthalene	0.1	ug/L		<0.1
	Acenaphthene	0.1	ug/L		<0.1

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

 Report Number:
 1968225

 Date Submitted:
 2021-12-07

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 883921

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1600428 GW 2021-12-07 TW1
Group	Analyte	MRL	Units	Guideline	
PAH	Acenaphthylene	0.1	ug/L		<0.1
	Anthracene	0.1	ug/L		<0.1
	Benzo(a)anthracene	0.1	ug/L		<0.1
	Benzo(a)pyrene	0.01	ug/L		<0.01
	Benzo(b)fluoranthene	0.05	ug/L		<0.05
	Benzo(g,h,i)perylene	0.1	ug/L		<0.1
	Benzo(k)fluoranthene	0.05	ug/L		<0.05
	Chrysene	0.05	ug/L		<0.05
	Dibenzo(a,h)anthracene	0.1	ug/L		<0.1
	Fluoranthene	0.1	ug/L		<0.1
	Fluorene	0.1	ug/L		<0.1
	Indeno(1,2,3-c,d)pyrene	0.1	ug/L		<0.1
	Naphthalene	0.1	ug/L		<0.1
	Phenanthrene	0.1	ug/L		<0.1
	Pyrene	0.1	ug/L		<0.1
PCB Surrogate	Decachlorobiphenyl	0	%		90
PCBs	Aroclor 1016	0.1	ug/L		<0.1
	Aroclor 1242	0.1	ug/L		<0.1
	Aroclor 1248	0.1	ug/L		<0.1
	Aroclor 1254	0.1	ug/L		<0.1
	Aroclor 1260	0.1	ug/L		<0.1
	Polychlorinated Biphenyls (PCBs)	0.1	ug/L		<0.1
VOCs Surrogates	Toluene-d8	0	%		100
Volatiles	Benzene	0.5	ug/L		<0.5
	Ethylbenzene	0.5	ug/L		<0.5

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

 Report Number:
 1968225

 Date Submitted:
 2021-12-07

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 883921

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1600428 GW 2021-12-07 TW1
<u> </u>	<u> </u>			Guideline	
Volatiles	m/p-xylene	0.4	ug/L		<0.4
	o-xylene	0.4	ug/L		<0.4
	Toluene	0.5	ug/L		<0.5
	Xylene; total	0.5	ug/L		<0.5

Guideline = * = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

Report Number: 1968225

Date Submitted: 2021-12-07

Date Reported: 2021-12-21

Project: PH4398

COC #: 883921

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 413207 Analysis/Extraction Date 20 Method P 8270	21-12-10 A na	ilyst CM	
Methlynaphthalene, 1-	<0.1 ug/L	100	50-140
Methlynaphthalene, 2-	<0.1 ug/L	100	50-140
Acenaphthene	<0.1 ug/L	102	50-140
Acenaphthylene	<0.1 ug/L	100	50-140
Anthracene	<0.1 ug/L	100	50-140
Benz[a]anthracene	<0.1 ug/L	84	50-140
Benzo[a]pyrene	<0.01 ug/L	95	50-140
Benzo[b]fluoranthene	<0.05 ug/L	99	50-140
Benzo[ghi]perylene	<0.1 ug/L	100	50-140
Benzo[k]fluoranthene	<0.05 ug/L	104	50-140
Chrysene	<0.05 ug/L	111	50-140
Dibenz[a h]anthracene	<0.1 ug/L	82	50-140
Fluoranthene	<0.1 ug/L	94	50-140
Fluorene	<0.1 ug/L	96	50-140
Indeno[1 2 3-cd]pyrene	<0.1 ug/L	92	50-140
Naphthalene	<0.1 ug/L	104	50-140

Guideline =

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

^{* =} Guideline Exceedence

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

 Report Number:
 1968225

 Date Submitted:
 2021-12-07

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 883921

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Phenanthrene	<0.1 ug/L	102	50-140
Pyrene	<0.1 ug/L	94	50-140
Run No 413771 Analysis/Extraction Date 20 Method EPA 200.8)21-12-09 Ana	ilyst SD	
Silver	<0.0001 mg/L	114	80-120
Arsenic	<0.001 mg/L	102	80-120
Boron (total)	<0.01 mg/L	113	80-120
Barium	<0.01 mg/L	101	80-120
Beryllium	<0.0005 mg/L	116	80-120
Cadmium	<0.0001 mg/L	107	80-120
Cobalt	<0.0002 mg/L	106	80-120
Chromium Total	<0.001 mg/L	106	80-120
Copper	<0.001 mg/L	111	80-120
Mercury	<0.0001 mg/L	90	80-120
Molybdenum	<0.005 mg/L	100	80-120
Nickel	<0.005 mg/L	110	80-120
Lead	<0.001 mg/L	103	80-120
Antimony	<0.0005 mg/L	79	80-120

Guideline =

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

^{* =} Guideline Exceedence

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

 Report Number:
 1968225

 Date Submitted:
 2021-12-07

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 883921

QC Summary

Ai	nalyte	Blank	QC % Red	QC c Limits	
Selenium		<0.001 mg/L	108	80-120	
Thallium		<0.0001 mg/L	102	80-120	
Uranium		<0.001 mg/L	98	80-120	
Vanadium		<0.001 mg/L	104	80-120	
Zinc		<0.01 mg/L	114	80-120	
Run No 413825 Method EPA 8260	Analysis/Extraction Date 20)21-12-10 A n	alyst YH		
Benzene		<0.5 ug/L	88	60-130	
Ethylbenzene		<0.5 ug/L	82	60-130	
m/p-xylene		<0.4 ug/L	84	60-130	
o-xylene		<0.4 ug/L	91	60-130	
Toluene		<0.5 ug/L	88	60-130	
Run No 413834 Method EPA 8260	Analysis/Extraction Date 20)21-12-10 A n	alyst YH		
Xylene Mixture					
Run No 413856 Method M SM3120B-3	Analysis/Extraction Date 20)21-12-10 A n	alyst ZS		
Sodium		<2 mg/L	103	82-118	

Guideline = * = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#:

Invoice to: Paterson Group

Report Number: 1968225

Date Submitted: 2021-12-07

Date Reported: 2021-12-21

Project: PH4398

COC #: 883921

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 413883 Analysis/Extraction Date 20 Method SM 3500-Cr B)21-12-10 Ana	llyst SKH	
Chromium VI	<0.01 mg/L	94	80-120
Run No 413950 Analysis/Extraction Date 20 Method EPA 8081B)21-12-10 A na	llyst RG	
Aroclor 1016	<0.1 ug/L	120	
Aroclor 1242	<0.1 ug/L	120	60-140
Aroclor 1248	<0.1 ug/L	120	60-140
Aroclor 1254	<0.1 ug/L	120	60-140
Aroclor 1260	<0.1 ug/L	120	60-140
Polychlorinated Biphenyls	<0.1 ug/L	120	60-140
Run No 413968 Analysis/Extraction Date 20 Method P 8270)21-12-13 A na	llyst C M	
1+2-methylnaphthalene			

Guideline = * = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

Invoice to: Paterson Group

PO#: 33461

Report Number: 19
Date Submitted: 20
Date Reported: 20
Project: Pl

1968398 2021-12-09 2021-12-21 PH4398 884073

19

Temperature (C):

Custody Seal:

COC #:

Page 1 of 11

Dear	Kirby	Magee.	.Dittburi	er:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Long Qu, Organics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated

Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accrteditation. The scope is available at http://www.cala.ca/scopes/2602.pdf

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 884073

Exceedence Summary

Sample I.D.	Analyte	Result	Units	Criteria

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

Report Number: 1968398
Date Submitted: 2021-12-09
Date Reported: 2021-12-21
Project: PH4398
COC #: 884073

uideline = O.Reg 1	53-T1-Ground	dwater		I.D. nple Matrix nple Type	1600846 GW153	1600847 GW153	1600848 GW153	1600849 GW153
<u>Metals</u>			San San	nple Date npling Time nple I.D.	2021-12-08 TW2	2021-12-08 TW3	2021-12-08 BH1	2021-12-0 BH2
Analyte	Batch No	MRL	Units	Guideline				
Antimony	413977	0.5	ug/L	STD 1.5	<0.5	<0.5	<0.5	<0.5
Arsenic	413977	1	ug/L	STD 13	<1	<1	<1	<1
Barium	413977	10	ug/L	STD 610	240	230	250	220
Beryllium	413977	0.5	ug/L	STD 0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	413977	10	ug/L	STD 1700	130	130	70	50
Cadmium	413977	0.1	ug/L	STD 0.5	<0.1	<0.1	<0.1	<0.1
Chromium Total	413977	1	ug/L	STD 11	<1	<1	<1	<1
Chromium VI	413883	10	ug/L	STD 25	<10	<10	<10	<10
Cobalt	413977	0.2	ug/L	STD 3.8	<0.2	<0.2	0.2	<0.2
Copper	413977	1	ug/L	STD 5	2	2	<1	<1
Lead	413977	1	ug/L	STD 1.9	<1	<1	<1	<1
Mercury	414089	0.1	ug/L	STD 0.1	<0.1	<0.1	<0.1	
	414172	0.1	ug/L	STD 0.1				<0.1
Molybdenum	413977	5	ug/L	STD 23	<5	<5	<5	<5
Nickel	413977	5	ug/L	STD 14	<5	<5	<5	<5
Selenium	413977	1	ug/L	STD 5	<1	<1	<1	<1
Silver	413977	0.1	ug/L	STD 0.3	<0.1	<0.1	<0.1	<0.1
Sodium	413967	2000	ug/L	STD 490000	22000	28000	12000	8000
Thallium	413977	0.1	ug/L	STD 0.5	<0.1	<0.1	<0.1	<0.1
Uranium	413977	1	ug/L	STD 8.9	2	3	2	2
Vanadium	413977	1	ug/L	STD 3.9	<1	<1	2	<1
Zinc	413977	10	ug/L	STD 160	<10	<10	<10	<10

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 884073

uideline = O.Reg 153	3-T1-Ground	dwater	Sar	o I.D. mple Matrix mple Type	1600846 GW153	1600847 GW153	1600848 GW153	1600849 GW153
<u>PAH</u>			Sar Sar	nple Type nple Date npling Time nple I.D.	2021-12-08	2021-12-08	2021-12-08	2021-12-0
Analyte	Batch No	MRL	Units	Guideline	TW2	TW3	BH1	BH2
1+2-methylnaphthalene	414118	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
Acenaphthene	413207	0.1	ug/L	STD 4.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	413207	0.1	ug/L	STD 1	<0.1	<0.1	<0.1	<0.1
Anthracene	413207	0.1	ug/L	STD 0.1	<0.1	<0.1	<0.1	<0.1
Benz[a]anthracene	413207	0.1	ug/L	STD 0.2	<0.1	<0.1	<0.1	<0.1
Benzo[a]pyrene	413207	0.01	ug/L	STD 0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	413207	0.05	ug/L	STD 0.1	<0.05	<0.05	<0.05	<0.05
Benzo[ghi]perylene	413207	0.1	ug/L	STD 0.2	<0.1	<0.1	<0.1	<0.1
Benzo[k]fluoranthene	413207	0.05	ug/L	STD 0.1	<0.05	<0.05	<0.05	<0.05
Chrysene	413207	0.05	ug/L	STD 0.1	<0.05	<0.05	<0.05	<0.05
Dibenz[a h]anthracene	413207	0.1	ug/L	STD 0.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	413207	0.1	ug/L	STD 0.4	<0.1	<0.1	<0.1	<0.1
Fluorene	413207	0.1	ug/L	STD 120	<0.1	<0.1	<0.1	<0.1
Indeno[1 2 3-cd]pyrene	413207	0.1	ug/L	STD 0.2	<0.1	<0.1	<0.1	<0.1
Methlynaphthalene, 1-	413207	0.1	ug/L	STD 2	<0.1	<0.1	<0.1	<0.1
Methlynaphthalene, 2-	413207	0.1	ug/L	STD 2	<0.1	<0.1	<0.1	<0.1
Naphthalene	413207	0.1	ug/L	STD 7	<0.1	<0.1	<0.1	<0.1
Phenanthrene	413207	0.1	ug/L	STD 0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	413207	0.1	ug/L	STD 0.2	<0.1	<0.1	<0.1	<0.1

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

Report Number: 1968398
Date Submitted: 2021-12-09
Date Reported: 2021-12-21
Project: PH4398
COC #: 884073

Guideline = O.Reg 153-T	1-Ground	dwater	Lab		1600846	1600847	1600848	1600849
<u>Volatiles</u>			Sam Sam Sam	ple Matrix ple Type ple Date pling Time ple I.D.	GW153 2021-12-08 TW2	GW153 2021-12-08 TW3	GW153 2021-12-08 BH1	GW153 2021-12-08 BH2
Analyte	Batch No	MRL	Units	Guideline				
Benzene	413921	0.5	ug/L	STD 0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	413921	0.5	ug/L	STD 0.5	<0.5	<0.5	<0.5	<0.5
Toluene	413921	0.5	ug/L	STD 0.8	<0.5	<0.5	<0.5	<0.5
Xylene Mixture	413921	0.5	ug/L	STD 72	<0.5	<0.5	<0.5	<0.5
Xylene, m/p-	413921	0.4	ug/L		<0.4	<0.4	<0.4	<0.4
Xylene, o-	413921	0.4	ug/L		<0.4	<0.4	<0.4	<0.4

<u>PCBs</u>			Lab I.D. Sample Matrix Sample Type Sample Date Sampling Time Sample I.D.		1600846 GW153 2021-12-08 TW2	1600847 GW153 2021-12-08 TW3	1600848 GW153 2021-12-08 BH1	1600849 GW153 2021-12-08 BH2
Analyte	Batch No	MRL	Units	Guideline				
Aroclor 1016	414140	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
Aroclor 1242	414140	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
Aroclor 1248	414140	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
Aroclor 1254	414140	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
Aroclor 1260	414140	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
Polychlorinated Biphenyls	414140	0.1	ug/L	STD 0.2	<0.1	<0.1	<0.1	<0.1

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 884073

Guideline = O Reg 153-T	Guideline = O.Reg 153-T1-Groundwater								
Caracillic Clivey 100-1	1-Oround	awatei		I.D.	1600846	1600847	1600848	1600849	
			Sample Matrix		GW153	GW153	GW153	GW153	
PCB Surrogate			Sample Type Sample Date Sampling Time		2021-12-08	2021-12-08	2021-12-08	2021-12-08	
			San	nple I.D.	TW2	TW3	BH1	BH2	
Analyte	Batch No	MRL	Units	Guideline					
Decachlorobiphenyl	414143	0	%		69	117	69	62	

VOCs Surrogates			Lab I.D. Sample Matrix Sample Type Sample Date Sampling Time Sample I.D.			1600847 GW153 2021-12-08 TW3	1600848 GW153 2021-12-08 BH1	1600849 GW153 2021-12-08 BH2
Analyte	Batch No	MRL	Units	Guideline				
Toluene-d8	413921	0	%		98	97	100	99

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 884073

Quality Assurance Summary

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
413207	Methlynaphthalene, 1-	<0.1 ug/L	100	50-140		50-140		0-30
413207	Methlynaphthalene, 2-	<0.1 ug/L	100	50-140		50-140		0-30
413207	Acenaphthene	<0.1 ug/L	102	50-140		50-140		0-30
413207	Acenaphthylene	<0.1 ug/L	100	50-140		50-140		0-30
413207	Anthracene	<0.1 ug/L	100	50-140		50-140		0-30
413207	Benz[a]anthracene	<0.1 ug/L	84	50-140		50-140		0-30
413207	Benzo[a]pyrene	<0.01 ug/L	95	50-140		50-140		0-30
413207	Benzo[b]fluoranthene	<0.05 ug/L	99	50-140		50-140		0-30
413207	Benzo[ghi]perylene	<0.1 ug/L	100	50-140		50-140		0-30
413207	Benzo[k]fluoranthene	<0.05 ug/L	104	50-140		50-140		0-30
413207	Chrysene	<0.05 ug/L	111	50-140		50-140		0-30
413207	Dibenz[a h]anthracene	<0.1 ug/L	82	50-140		50-140		0-30
413207	Fluoranthene	<0.1 ug/L	94	50-140		50-140		0-30
413207	Fluorene	<0.1 ug/L	96	50-140		50-140		0-30
413207	Indeno[1 2 3-cd]pyrene	<0.1 ug/L	92	50-140		50-140		0-30
413207	Naphthalene	<0.1 ug/L	104	50-140		50-140		0-30
413207	Phenanthrene	<0.1 ug/L	102	50-140		50-140		0-30
413207	Pyrene	<0.1 ug/L	94	50-140		50-140		0-30
413883	Chromium VI	<10 ug/L	94	80-120	88	70-130	0	0-35
413921	Benzene	<0.5 ug/L	88	60-130	101	50-140	0	0-30
413921	Ethylbenzene	<0.5 ug/L	82	60-130	90	50-140	0	0-30
413921	Xylene, m/p-	<0.4 ug/L	84	60-130	97	50-140	0	0-30
413921	Xylene, o-	<0.4 ug/L	91	60-130	97	50-140	0	0-30
413921	Toluene	<0.5 ug/L	88	60-130	102	50-140	0	0-30
413921	Xylene Mixture	<0.5 ug/L						
413967	Sodium	<2000 ug/L	108	82-118	80	80-120	0	0-20
413977	Silver	<0.1 ug/L	111	80-120	124	70-130	17	0-20
413977	Arsenic	<1 ug/L	101	80-120	116	70-130	0	0-20
413977	Boron (total)	<10 ug/L	110	80-120		80-120	0	0-20
413977	Barium	<10 ug/L	90	80-120	13	70-130	0	0-20
413977	Beryllium	<0.5 ug/L	116	80-120	120	70-130	0	0-20
413977	Cadmium	<0.1 ug/L	105	80-120	122	70-130	0	0-20
413977	Cobalt	<0.2 ug/L	97	80-120	97	70-130	0	0-20

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

Report Number: 1968398
Date Submitted: 2021-12-09
Date Reported: 2021-12-21
Project: PH4398
COC #: 884073

Quality Assurance Summary

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
413977	Chromium Total	<1 ug/L	96	80-120	103	70-130	0	0-20
413977	Copper	<1 ug/L	102	80-120	92	70-130	2	0-20
413977	Molybdenum	<5 ug/L	94	80-120	103	70-130	0	0-20
413977	Nickel	<5 ug/L	106	80-120	100	70-130	0	0-20
413977	Lead	<1 ug/L	89	80-120	93	70-130	0	0-20
413977	Antimony	<0.5 ug/L	107	80-120	111	70-130	0	0-20
413977	Selenium	<1 ug/L	114	80-120	142	70-130	0	0-20
413977	Thallium	<0.1 ug/L	91	80-120	96	70-130	0	0-20
413977	Uranium	<1 ug/L	92	80-120	107	70-130	0	0-20
413977	Vanadium	<1 ug/L	98	80-120	107	70-130	0	0-20
413977	Zinc	<10 ug/L	113	80-120	137	70-130	0	0-20
414089	Mercury	<0.1 ug/L	98	76-123	96	70-130	0	0-20
414118	1+2-methylnaphthalene							
414140	Aroclor 1016	<0.1 ug/L	120		N/A		N/A	
414140	Aroclor 1242	<0.1 ug/L	120	60-140	N/A	60-140	N/A	0-30
414140	Aroclor 1248	<0.1 ug/L	120	60-140	N/A	60-140	N/A	0-30
414140	Aroclor 1254	<0.1 ug/L	120	60-140	N/A	60-140	N/A	0-30
414140	Aroclor 1260	<0.1 ug/L	120	60-140	N/A	60-140	N/A	0-30
414140	Polychlorinated Biphenyls	<0.1 ug/L	120	60-140		60-140		0-30
414172	Mercury	<0.1 ug/L	118	76-123	91	70-130	0	0-20

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 884073

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method
413207	Methlynaphthalene, 1-	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Methlynaphthalene, 2-	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Acenaphthene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Acenaphthylene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Anthracene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Benz[a]anthracene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Benzo[a]pyrene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Benzo[b]fluoranthene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Benzo[ghi]perylene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Benzo[k]fluoranthene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Chrysene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Dibenz[a h]anthracene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Fluoranthene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Fluorene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Indeno[1 2 3-cd]pyrene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Naphthalene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Phenanthrene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413207	Pyrene	GC-MS	2021-12-14	2021-12-14	C_M	P 8270
413883	Chromium VI		2021-12-10	2021-12-10	SKH	SM 3500-Cr B
413921	Benzene	GC-MS	2021-12-03	2021-12-11	YH	EPA 8260
413921	Ethylbenzene	GC-MS	2021-12-03	2021-12-11	ΥH	EPA 8260
413921	Xylene, m/p-	GC-MS	2021-12-03	2021-12-11	YH	EPA 8260
413921	Xylene, o-	GC-MS	2021-12-03	2021-12-11	ΥH	EPA 8260
413921	Toluene	GC-MS	2021-12-03	2021-12-11	YH	EPA 8260
413921	Xylene Mixture	GC-MS	2021-12-13	2021-12-13	ΥH	EPA 8260
413967	Sodium	ICP-OES	2021-12-13	2021-12-13	Z_S	M SM3120B-3500C
413977	Silver	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8
413977	Arsenic	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8
413977	Boron (total)	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8
413977	Barium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8
413977	Beryllium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8
413977	Cadmium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8
413977	Cobalt	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

 Project:
 PH4398

 COC #:
 884073

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method		
413977	Chromium Total	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Copper	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Molybdenum	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Nickel	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Lead	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Antimony	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Selenium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Thallium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Uranium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Vanadium	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
413977	Zinc	ICAPQ-MS	2021-12-13	2021-12-13	SD	EPA 200.8		
414089	Mercury	CV AA	2021-12-14	2021-12-14	AaN	M SM3112B-3500B		
414118	1+2-methylnaphthalene	GC-MS	2021-12-15	2021-12-15	C_M	P 8270		
414140	Aroclor 1016	GC/ECD	2021-12-14	2021-12-15	ZoB	EPA 8081B		
414140	Aroclor 1242	GC/ECD	2021-12-14	2021-12-15	ZoB	EPA 8081B		
414140	Aroclor 1248	GC/ECD	2021-12-14	2021-12-15	ZoB	EPA 8081B		
414140	Aroclor 1254	GC/ECD	2021-12-14	2021-12-15	ZoB	EPA 8081B		
414140	Aroclor 1260	GC/ECD	2021-12-14	2021-12-15	ZoB	EPA 8081B		
414140	Polychlorinated Biphenyls	GC/ECD	2021-12-14	2021-12-15	ZoB	EPA 8081B		
414172	Mercury	CV AA	2021-12-15	2021-12-15	AaN	M SM3112B-3500B		

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Paterson Group

154 Colonnade Rd. South

Nepean, ON K2E 7T7

Attention: Mr. Kirby Magee-Dittburner

PO#: 33461

Invoice to: Paterson Group

 Report Number:
 1968398

 Date Submitted:
 2021-12-09

 Date Reported:
 2021-12-21

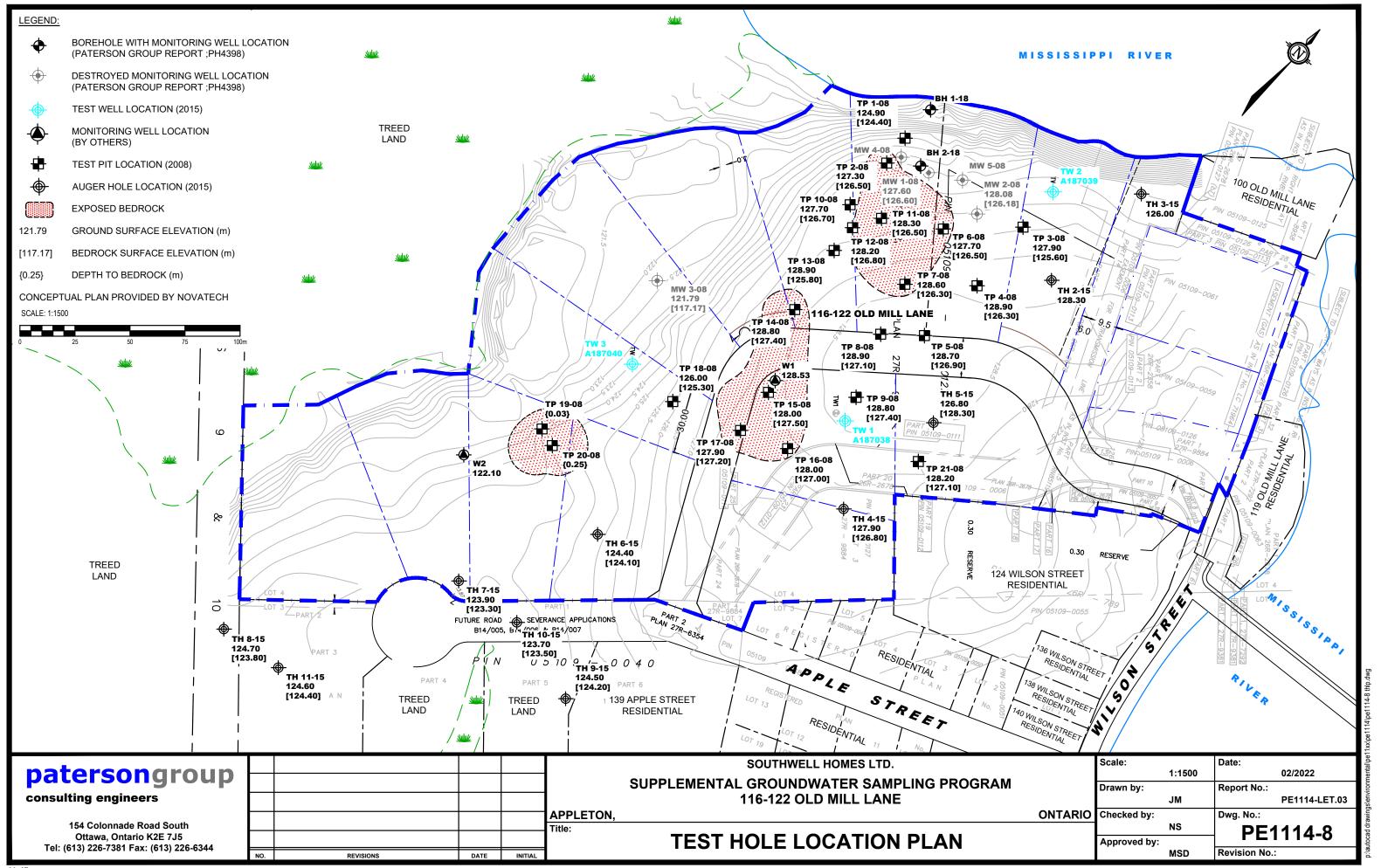
 Project:
 PH4398

 COC #:
 884073

CWS for Petroleum Hydrocarbons in Soil - Tier 1

Notes:

- The laboratory method complies with CCME Tier 1 reference method for PHC in soil. It is validated for laboratory use.
- 2. Where the F1 fraction (C6 to C10) and BTEX are both measured, F1-BTEX is reported.
- 3. Where the F2 fraction (C10 to C16) and naphthalene are both measured, F2-naphthalene is reported.
- 4. Where the F3 fraction (C16 to C34) and PAHs* are both measured, F3-PAH is reported.
- 5. F4G is analyzed if the chromatogram does not descend to baseline before C50. Where F4 (C34 to C50) and F4G are both reported, the higher result is compared to the standard.
- 6. Unless otherwise stated in the sample comments, the following criteria have been met where applicable:
 - nC6 and nC10 response factors within 30% of response factor for toluene;
 - nC10, nC16, and nC34 response factors within 10% of each other;
 - C50 response factors within 70% of nC10 + nC16 + nC34 average; and,
 - Linearity is within 15%.
- 7. Unless otherwise stated in the sample comments, sampling requirements and analytical holding times have been met.
- Gravimetric heavy hydrocarbons (F4G) cannot be added to the C6 and C50 hydrocarbons.
- 9. *PAHs = phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene and pyrene.


Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

884073 STANDARD CHAIN-OF-CUSTODY

Eurofins Workorder #:	1068398
EULOTHIS MOLKOLOGI #:	

200	ai Oi iii 3			146 Col	onnade R	oad Unit	#R Ottaw	a ON KZ	E 7V1 - Dh	ne: 613.7	7-5692 E	av. 612.7	27-5222					Lui	Office WC	rkorder		
146 Colonnade Road, Unit #8, Ottawa, ON, K2 CLIENT INFORMATION												N (SA	MEA	S CLIE	NT II	VFOR	MAT	ON:	YES V NO)			
Company:	Paterson Group								1	ompany:							Fax:					
Contact:	Kirby Magee-Ditt	burner							Contact	.							Email: #1:					
Address:	154 Colonnade F	Road South															Email: #2:					
Telephone:	613-218-3444	Cell:							Telepho	one:	ne:							33	461			
Email: #1: eardley@patersongroup.ca, mlaflamme@patersongroup.ca								REGULATION/GUIDELINE REQUIRED														
Email: #2: kmageedittburner@patersongroup.ca							Sanitary Sewer, City: Ottawa O. Reg 153															
Project:	PH4398	Срания в применя		Quote #	1:				Storm Sewer, City: Ottawa							7						
TURN-AROUND TIME (Business Days)							Table #, Course / Fine, Surface / su ODWSOG Type: Com-Ind / Res-Park / Agri / GW / All Ot															
1 Day	r* (100%)	2 Day** (50%) 3-5 (Days (25%)			√ 5-	7 Days (S	tandard)		PWQO							Excess Soil, Table: Type:					
	*For results reporte	Please contact Lab in advance to determine rush ad after rush due date, surcharges will apply: befor			12:00 - 5	0%.]	O. Reg 347/558												
	**For results repor	ted after rush due date, surcharges will apply: befo	re 12:00 - 5	0%, after	12:00 - 2	5%.												ubmission will form part of a formal				
			Consul	D.A. II.	200					None								necore		Site Condition (RSC) under O.Reg. 153/04 Yes No		
The optimal te	mperature conditions duri	ng transport should be less than 10°C. Sample(s		e Details	37.63			100		middle in	Sampl	e Analy	sis Requ	ired								
		ated or agreed upon with the Laboratory. Note		tered>	_									1.5					RN#			
		water samples. The COC must be complete upon		1			O.Re	g.153 par	rameters			1 8	1.5			S	100	9	1 00	1	(Lab Use Only)	
submission of t		\$25 surcharge if required information is missing	8							sics	TO MI	ded	dd			Metals			Iran			
	(required field	s are shaded in grey).	4 X	ners						Tea.	1	pe	Su			Je		. □	J.T.		100	
			N N	İ	I					or .	Jac Jac	ach	Sior (Ec	1000		2		E	80		15, 7 1,00	
			a d	of Contain	E	×	1 19	20	1 0	als +	sie	eat	odivi cti 2	S	I	Total	0	Chromium	Dioxin		4 (0.0)	
Sample ID	Representation of the least of	Date/Time Collected	Sam	# of	PHC	втех	NO N	PAHS	PCB	Met	Met	S.	Sut	TSS	Ha	Tc	Hg	Ö	Dig		200	
	TW2	December 8, 2021	GW	1		1		1	1							1	1	1	1		1600846	
	TW3	December 8, 2021	GW	1		1		1	1							1	1	1	1		49 48	
	BH1	December 8, 2021	GW	1		1		1	1							1	1	1	1			
	BH2	December 8, 2021	GW	1		1		1	1	Ш					Ц	1	1	1	1		40	
					Ц	Ц	Щ		Щ	Щ		Ц										
					Ц	Щ				Ш	Ш				Ц			Ц	Ц	Ш		
	Personal				H	H	H		H				H	H		H	H		L	Ц		
						H																
			-		H	H	H		H	H	H		H					H				
PRINT				SIGN	ш		DATE/TIME COMI				COMME	OMMENTS:										
Sampled By:	Kirby Magao Ditthurper							December 8, 2021														
Relinquished By	Minh. Mar. D		- 3	10	Ly	-	1/1	11			cembe			10	2							
Received By:										10 000 100					CUSTODY SEAL: YES NO sce packs submitted: Yes No							

