patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Phase II - Environmental Site Assessment

Former Appletex Mill 116-122 Old Mill Lane Appleton, Ontario

Prepared For

Carlgate Development Inc.

June 18, 2009

Report: PE1114-1

Paterson Group Inc.

Consulting Engineers 28 Concourse Gate - Unit 1 Ottawa (Nepean), Ontario Canada K2E 7T7

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

TABLE OF CONTENTS

PAGE

1.0	INTRO	DDUCTION
2.0	BACK 2.1 2.2 2.3	GROUNDSite InformationHistorical InformationPrevious Engineering Reports2
3.0	METH 3.1 3.2 3.3	IOD OF INVESTIGATIONSubsurface InvestigationAnalytical TestingSurveying9
4.0	OBSE 4.1 4.2 4.3	RVATIONS AND RESULTSSubsurface ProfileGroundwater10Analytical Test Results11
5.0	ASSE 5.1 5.2	SSMENT AND RECOMMENDATIONSAssessmentRecommendations30
6.0	STAT	EMENT OF LIMITATIONS 33
LIST OF API	PENDI	CES
Appendix 1		Soil Profile and Test Data Sheet

- Symbols and Terms Analytical Test Results
- Appendix 2Figure 1 Key PlanDrawing PE1114-4 Test Hole Location Plan

1.0 INTRODUCTION

At the request of Carlgate Developments, Paterson Group (Paterson) conducted a Phase II - Environmental Site Assessment (ESA) of the property known as the former Appletex Mill located at 116 - 122 Old Mill Lane in the Village of Appleton, Ontario.

The purpose of the Phase II ESA was to further evaluate the soil and groundwater conditions on the subject site subsequent to an initial soil remediation program conducted in May of 2007.

This report has been prepared specifically and solely for the above noted project which is described herein. It contains all of our findings and results of the environmental conditions at this site.

2.0 BACKGROUND

2.1 Site Information

The subject site is located on the west side of Old Mill Lane, north of Apple Street in the Village of Appleton, Ontario. The currently vacant property is situated along the shores of the Mississippi River, immediately adjacent to the Appleton Swamp, a provincially significant wetland.

The property was most recently occupied by a textile mill. However, the site has been vacant since the mill closed in 1989. The subject buildings, including the main mill structure, a pump house, a storage shed and the heating plant, were recently demolished following two fires, the most recent being in 2006. The concrete blocks from the former buildings remain on site.

The topography of the subject site slopes down towards the wetlands to the west. The majority of the site is located on a shallow limestone and dolomite bedrock deposit. A small escarpment runs in a north-south direction on the western portion of the site. The escarpment separates the low lying swampy area to the west, from the higher area to the east where the former plant was located. Site drainage consists of infiltration and runoff to three (3) lagoons located on the western portion of the site. The lagoons have not been in operation for many years and have become a natural habitat for the surrounding wetland creatures.

2.2 Historical Information

The subject site has an extensive history extending back to the 1970's. Prior to the subsurface investigation, Paterson reviewed a number of investigations, environmental assessments, reports and correspondence records that were compiled by the Ministry of the Environment (MOE) regarding the former Appletex site. The documents were reviewed in the MOE Ottawa office.

The site was owned and operated by the Collie Woolen Mill from the 1930's until 1989. In the mid-1980's three (3) lagoons were constructed on the western portion of the property. The lagoons were used to handle the waste from the dying process. Numerous complaints were made in the late 1980's by the surrounding residences regarding the discharge from the lagoons and the placement of waste on the subject site. The MOE subsequently investigated these complaints.

From 1989 to 1994, numerous MOE investigations and orders, many of which resulted in legal action, were made against the subject property. The site was under new management during this time and became vacant in 1992. The main concerns were with respect to the overflowing of liquid discharge from the lagoons to the surrounding wetland, the improper storage of chemicals on the property, the presence of PCB capacitors and light ballasts, unknown buried waste and physical site security.

2.3 Other Engineering Reports

In 1992 a Phase I Environmental Audit was conducted on the subject site by Dames & Moore, Canada (DMC). Following a historical review and subsequent site visit it was concluded that "*substantial environmental liabilities are associated with the Appletex Site*". Environmental concerns identified included the discharge of chemicals into the lagoons, the illegal dumping of debris and waste materials, abandoned bunker and fuel oil aboveground storage tanks (ASTs), improper storage of chemicals and the presence of PCB containing equipment. A subsurface investigation was subsequently recommended along with the removal of chemicals, ASTs and buried waste from the subject site.

During the investigation DMC collected water and sediment samples from the lagoons. The water samples were analysed for BOD, COD, total nitrogen, phosphate, total organic carbon and other parameters. Mercury was detected above the applicable provincial water quality objectives (PWQO) in Lagoon 3. The remaining water and sediment parameters, with the exception of pH, were in compliance with applicable standards.

In 1993, the MOE conducted a water analysis on the subject site. Water samples from the lagoons were collected and analysed for twenty-seven (27) inorganic parameters. Lead, aluminum and strontium were found in concentrations exceeding the PWQO and/or the ODWO in all three (3) lagoons. Hardness, DOC, copper, zinc and iron were found in excess of the applicable objectives in one or two of the lagoons. The MOE also issued an order in 1993 to secure the abandoned premises, remove stored wastes and to conduct studies to decommission the lagoons.

In 1994, Water and Earth Sciences Associates (WESA) was commissioned to conduct an environmental investigation on the subject property. The investigation consisted of the placement of fourteen (14) test pits, and three (3) boreholes with monitoring wells. A waste classification survey was also conducted.

The test pits were primarily placed in the area of dumped waste and debris, a test pit was placed near the bunker oil AST, two on the east side of the main building and two more south of the main building, south of the access road. Boreholes with monitoring wells were placed north and south of the main building and in the area of dumped waste.

A total of eight (8) soil samples from the test pits were submitted for analytical testing for a combination of metals, total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylenes (BTEX). Two (2) samples obtained from the area of the lagoons were also tested for fluoride and sulphate. Chromium VI was found in excess of the standards applicable at that time in one soil sample (TP3) recovered from the waste disposal area. The remaining parameter concentrations were below the MOEE 1989 Clean-Up guidelines for a low sensitivity site.

The MOE standards have been changed since the issuance of the WESA report. When compared to the current MOE Table 2 standards for a residential property, metal exceedences were identified in two (2) of the previously tested soil samples. Concentrations of lead were detected above the Table 2 standards in TP3 and TP6, both located in the waste disposal area. The testing method for petroleum hydrocarbons has also been changed since the 1994 report. A direct comparison can not be made between the previously detected TPH concentrations and the current standards. Three (3) groundwater samples obtained from the monitoring wells installed by WESA were submitted for general chemistry parameters including (but not limited to) chloride, fluoride, nitrate, sulphate, iron, mercury, conductivity and phenols. The results were compared to the applicable Ontario Drinking Water Objectives (ODWO). Three (3) parameter concentrations were identified in the groundwater samples, in excess of the ODWO.

The report concluded that "*several issues related to potential environmental concern*" were present on the subject site including:

- Residual chemicals and waste in and around the buildings
- U Wastewater and sludge from the lagoons
- Miscellaneous solid waste disposed on the property and
- Groundwater.

It was recommended that the residual wastes around the buildings be removed and that further investigation of the water and sediment in the lagoons be conducted in order to determine the most practical and acceptable lagoon decommissioning process. Various decommissioning options including "do nothing", "stabilize and isolate on site" and "physical removal" were detailed.

Based on the analytical test results it was concluded that the solid waste buried on site did not present a significant environmental concern. It was recommended that the waste be isolated and capped and the area only be developed as open area. The groundwater exceedences were not considered to be a significant concern and no further work was recommended.

Following the WESA investigation, the majority of the chemicals stored on site, with the exception of polychlorinated biphenyls (PCBs) and ASTs, were removed from the property. In November of 1994 a fire broke out in the former mill and due to the presence of PCBs, adjacent residences were evacuated. Following the fire, all PCB-containing equipment was removed from the site to and placed at a secure, registered storage facility.

In March 2007, the MOE was alerted to an oil spill that had occurred on the subject site and continued into the Mississippi River. The spill was from a former bunker oil AST located near the Mill. Provincial orders to contain and remediate the impacted soil and groundwater were issued by the MOE.

Paterson was commissioned to supervise the remediation program which was conducted in April and May of 2007. A total of 1,740 tonnes of material was disposed of at a registered landfill facility as contaminated waste. Approximately 1000 tonnes of "clean" material was stockpiled on site and 13,650 L of liquid waste was removed and disposed of by a licenced contractor.

Analytical testing identified that petroleum impacted soil, in excess of all the MOE standards, remained on the western edge of the excavation, adjacent to the Mississippi River and along the shoreline, where high spring water levels made it impossible to remove the impacted soil at that time. Testing also identified metals in excess of the MOE Table 3 commercial standards in the "clean" stock piled material. Further excavation was recommended.

A summary letter (PE11147-LET.01), dated August 10, 2007 was issued by Paterson.

A letter from the MOE, dated November 8, 2007, stated that the aforementioned oil spill has been remediated as per the Provincial Officers Orders and that the MOE file was considered to be closed. It was noted, however, that residual contamination may remain on site.

In November 2007, two (2) of the lagoons located on the western portion of the site were breached, releasing the water and sediment into the adjacent provincially significant wetland. Another Provincial Officers Order was issued for the reinstatement of the lagoon walls. The lagoon walls were later reinstated.

In June of 2008, the MOE collected sediment samples from the area immediately west of the lagoons in order to determine if the released sediment had an impact on the adjacent sensitive area. The results of the analytical testing were subsequently made available to Paterson, for review.

The analytical test results indicate that concentrations of copper and manganese above the Lowest Effective Level (LEL) are present in the sediment within Pond No. 1 (Lagoon 3) and that concentrations of chromium, copper, iron, manganese, nickel and zinc at levels above the LEL, are present within Pond No. 2 (Lagoon 2).

Sediment samples collected from the settling pond discharge aprons were also analysed. Levels of chromium, copper, manganese and zinc equalled or exceeded LELs at the Pond No. 1 discharge apron. Levels of chromium, copper, iron and nickel equalled or exceeded LELs at the Pond No. 2 discharge apron, and on one occasion, manganese exceeded an SEL (Severe Effect Level).

The settling Pond discharge aprons are situated outside of the settling ponds, within the downgradient wetland, and contain sediment contaminated with metal concentrations in excess of the LELs. The sediment sampling data show that contaminated sediment from settling Pond No. 1 and settling Pond No. 2 has likely discharged to the respective discharge aprons within the adjacent wetland. The discharge of the contaminated sediment is considered to have been caused by the breaches of the settling ponds.

The Guidelines for the Management and Protection of Aquatic Sediment Quality in Ontario (MOEE, August 1993) state "When sediment quality in an area consistently exceeds the Lowest Effect Level (LEL) Guideline, that area shall be considered as an area of potential concern. In areas where contaminants in sediment are at or above LEL, steps should be taken to control all point and non-point contaminant sources to the area." The Guidelines state that if the contaminant concentrations exceed SELs, measures in addition to source control may be required to remediate the sediment.

3.0 METHOD OF INVESTIGATION

3.1 Subsurface Investigation

Field Program

The subsurface investigation was conducted in two (2) parts. Twenty-one (21) test pits and three (3) boreholes with monitoring wells were placed on the subject site in August of 2008. The test pits were placed to assess the soil conditions in and around the former building, near the buried waste area and to address fill consisting of material stockpiled during the 2007 remediation program. The boreholes were placed near the former bunker oil aboveground storage tank (AST), in the area previously used for chemical storage and adjacent to the lagoons.

Paterson returned to site on October 17, 2008. At this time, two (2) additional boreholes constructed with monitoring wells, were placed on the subject site. The boreholes were completed with a track mounted drill rig. All test hole locations are depicted on the Test Hole Location Plan in Appendix 2. Both field programs were conducted under full time supervision of Paterson personnel.

The test pits were completed to depths ranging from surface to 3.1 m below the existing grade. The boreholes were completed to depths of 7.6 to 12.2 m below the existing grade. A total of forty-seven (47) soil samples were recovered from the test holes. Bedrock was encountered in all the test holes at depths ranging from surface to 3.1 m. Upon recovery all samples were immediately sealed in appropriate containers to facilitate the preliminary screening procedure.

The depths at which the soil samples were obtained from the test holes are shown as "**G**", "**AU**" and "**SS**" on the Soil Profile and Test Data Sheets in Appendix 1.

Sediment samples from each lagoon were obtained during the field program. To address concerns regarding the use of pulverized painted concrete as backfill material, samples of paint from the concrete block rubble were also obtained in order to determine if the paint was lead based.

All samples recovered as part of this investigation will be stored in the laboratory for a period of one (1) month after issuance of this report. All samples will then be discarded unless this firm is otherwise directed.

Monitoring Well Installation

Groundwater monitoring wells were constructed in all five (5) boreholes to further assess groundwater quality beneath the subject property. Typical monitoring well construction details are described below:

- □ 30 mm diameter PVC riser pipe from top of screen to just below ground surface.
- Slotted 30 mm diameter PVC screen from riser to approximately 12.0 m below grade.
- □ No.3 silica sand backfill within annular space around screen.
- □ 300 mm thick bentonite hole plug directly above PVC slotted screen and at ground surface.
- Clean backfill from ground surface to the top of bentonite plug.
- Metal flush mount cap at ground surface.

Refer to the Soil Profile and Test Data sheets in Appendix 1 for specific well construction details.

Soil Sampling Protocol

Soil sampling protocols were followed using the MOE document entitled *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"*, dated May 1996.

The soil samples recovered from the test holes were sampled by hand, using protective gloves (changed after each sample). The samples were placed into sealed containers.

Soil Sample Headspace Analysis

A Gastech calibrated to hexane was used to measure the combustible vapour concentrations in the headspace of all soil samples recovered from the test pits. The technical protocol was obtained from Appendix C of the MOE document titled "Interim Guidelines for the Remediation of Petroleum Contamination at Operating Retail and Private Fuel Outlets in Ontario", dated March 1992.

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The vapour readings were found to range from 20 to 80 ppm in all of the test pits. The results of the survey are not indicative of significant volatile substances within the soil samples. It should be noted that the vapour readings can not be used to assess the potential of heavier petroleum compounds. The results of the vapour survey are presented on the Soil Profile & Test Data sheets in Appendix 1.

Groundwater Sampling Protocol

Groundwater sampling protocols were followed using the MOE document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. The groundwater samples from the wells were taken using a dedicated water footvalve and polytubing. Each well was purged prior to sampling. A minimum of three (3) times the well volume (if adequate water was available) was removed.

Samples were stored in bottles prepared by Paracel Laboratories (Paracel). Samples were stored in coolers to reduce anatyle volatization during transportation.

3.2 Analytical Testing

Twelve (12) soil samples and six (6) groundwater samples were submitted for analysis of a combination of metals, volatile organic compounds (VOC's), petroleum hydrocarbons (PHCs), benzene, toluene, ethlebenzene and xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAHs).

Two (2) of the groundwater samples submitted for analysis were obtained from monitoring wells installed by others. The results of the analytical testing are presented in Subsection 4.4. A copy of the laboratory reports are included in Appendix 1.

Paracel of Ottawa, performed laboratory analysis of the soil and water samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL) and is accredited and certified by SCC/CAEAL for specific tests registered with the Association.

3.3 <u>Surveying</u>

All test pits and monitoring wells were surveyed by GS Smith Surveying Ltd. The existing surface elevations were referenced to a geodetic Survey of Canada Monument.

4.0 OBSERVATIONS AND RESULTS

4.1 <u>Subsurface Profile</u>

Fill material consisting of silty sand with clay was encountered in all but two (2) test holes. Occasional pieces of concrete, metal and slag was observed in the fill material. It is suspected that the fill material, previously excavated during the remediation and stockpiled on site, was distributed in the southeast portion of the site in the area of TP11 through TP 17. Fill in the area of the former waste disposal site (TP20) was found to contain deleterious material including, plastic, rubber, fabric and metal.

Bedrock was encountered in all the test holes at depths ranging from surface to 3.1 m below the existing ground elevation. Native soil material consists of silty sand overlying a silty clay deposit.

Specific details of the soil profile at each test hole location can be seen on the Soil Profile and Test Data Sheets in Appendix 1.

4.2 <u>Groundwater</u>

The stabilised groundwater levels were obtained from the five (5) monitoring wells installed by Paterson and the two (2) monitoring wells installed by WESA in 1994. Based on the data obtained by WESA, the groundwater flow direction is determined to be towards the west. It should be noted that groundwater levels will fluctuate seasonally.

Table 1 Groundwater levels									
Monitoring Well Date Groundwater level (m) Groundwater Elevation (m)									
MW1-08	Sept. 2/08	9.86	117.59						
	Oct. 28/08	10.67	116.78						
MW2-08	Sept. 2/08	7.3	120.78						
MW3-08	Sept. 2/08	2.70	119.09						
MW4-08	Oct. 28/08	9.87							
MW5-08	Oct. 28/08	9.90							
MW1*	Sept. 2/08	10.24	118.29						
MW2*	Sept. 2/08	3.33	118.77						

4.3 Analytical Test Results

Remediation Criteria

The remediation criteria for the subject property were obtained from Table 1 and Table 2 of the document entitled "*Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.*", prepared by the Ontario Ministry of Environment (MOE) in March 2004.

A 30 m buffer area along the Mississippi River shoreline and the limit of the adjacent wetland is qualified as sensitive based on its proximity to the Mississippi River. Table 1 standards are applicable within this 30 m buffer zone.

The remainder of the site was compared to the Table 2 standards based on a residential property with coarse grained soil in a potable groundwater setting.

Analytical Results for Soil

A total of twelve (12) soil samples were submitted for analytical testing for a combination of metals, PHCs, BTEX, PAHs and VOCs. The results of the analytical testing are presented in Tables 2 to 5 along with the selected MOE standards. A copy of the laboratory test results are included in Appendix 1 of this report.

	Table 2 Analytical Test Results - Soil - Metals								
Parameter	MDL		Soil Sample	MOE Table 1	MOE Table				
	(µg/g)	TP3 G1	TP8 G1	TP9 G1	TP11 G1	(µg⁄g)	Residential (µg∕g)		
Antimony	1	nd	nd	nd	nd	1.0	13		
Arsenic	1	2	nd	1	4	17	20		
Barium	10	124	31	112	94	210	750		
Beryllium	0.5	0.5	nd	0.5	nd	1.2	1.2		
Boron (avail.)	0.5	0.8	nd	nd	nd	nv	1.5		
Cadmium	0.5	nd	nd	nd	<u>1.5</u>	1.0	12		
Chromium	5	<u>20</u>	<u>11</u>	<u>19</u>	<u>30</u>	7.1	750		
Chromium VI	0.4	nd	nd	nd	nd	2.5	8.0		
Cobalt	5	7	nd	6	7	21	40		
Copper	5	12	6	13	42	85	225		
Iron	200	16,700	11,500	16,200	29,100	nv	nv		
Lead	1	<u>142</u>	5	11	<u>308</u>	120	200		
Mercury	0.1	nd	nd	nd	nd	0.23	10		
Molybdenum	1	nd	nd	nd	1	2.5	40		
Nickel	5	11	6	12	<u>48</u>	43	150		
Selenium	1	nd	nd	nd	nd	1.9	10		
Silver	0.3	nd	nd	nd	nd	0.42	20		
Thallium	1	nd	nd	nd	nd	2.5	4.1		
Vanadium	10	29	22	30	<u>121</u>	91	200		
Zinc	20	57	nd	26	<u>532</u>	160	600		
Notes: Notes:	Notes: MDL - Method Detection Limit; nd - Not Detected (< MDL)								

	Table 2 Continued Analytical Test Results - Soil - Metals								
Parameter	MDL		Soil Sample	MOE Table 1	MOE Table 2 Residential				
	(µg/g)	TP13 G1	TP16 G1	TP18 G1	TP20 G1	(µg/g)	μg/g)		
Antimony	1	nd	nd	nd	<u>4</u>	1.0	13		
Arsenic	1	8	8	6	5	17	20		
Barium	10	<u>322</u>	<u>241</u>	<u>549</u>	<u>468</u>	210	750		
Beryllium	0.5	0.8	0.5	0.5	0.5	1.2	1.2		
Boron (avail.)	0.5	0.7	1.1	0.8	1.2	nv	1.5		
Cadmium	0.5	0.5	nd	nd	<u>1.7</u>	1.0	12		
Chromium	5	<u>25</u>	<u>27</u>	<u>23</u>	<u>186</u>	7.1	750		
Chromium VI	0.4	nd	nd	nd	nd	2.5	8.0		
Cobalt	5	10	8	5	7	21	40		
Copper	5	38	54	14	<u>125</u>	85	225		
Iron	200	26 600	21 700	16 100	27 400	nv	nv		
Lead	1	43	84	28	<u>294</u>	120	200		
Mercury	0.1	nd	<u>0.5</u>	<u>0.9</u>	<u>0.4</u>	0.23	10		
Molybdenum	1	nd	1	1	nd	2.5	40		
Nickel	5	28	<u>51</u>	13	25	43	150		
Selenium	1	nd	nd	nd	nd	1.9	10		
Silver	0.3	nd	nd	nd	nd	0.42	20		
Thallium	1	nd	nd	nd	nd	2.5	4.1		
Vanadium	10	<u>101</u>	240	45	28	91	200		
Zinc	20	102	<u>185</u>	33	<u>413</u>	160	600		
Notes:	Notes: MDL - Method Detection Limit; nd - Not Detected (< MDL)								

Various metal parameters were detected in all eight soil samples in excess of the MOE Table 1 standards. Lead was detected in excess of the MOE Table 2 standards in TP11 G1 and TP20 G1. Vanadium was found in excess of the Table 2 standard in TP16 G1.

Table 3 Analytical Test Results - Soil - Volatile Organic Compounds (VOCs)								
	MDL	Soil Samp	oles (µg/g)	MOE Table 1	MOE Table 2			
Parameter	(µg/g)	TP6 G3	TP7 G4	Standards (µg/g)	Residential (µg/g)			
Benzene	0.002	nd	nd	0.002	0.24			
Bromodichloromethane	0.002	nd	nd	nv	0.12			
Bromoform	0.002	nd	nd	0.002	0.11			
Bromomethane	0.003	nd	nd	0.003	0.061			
Carbon Tetrachloride	0.002	nd	nd	0.002	0.10			
Chlorobenzene	0.002	nd	nd	0.002	2.4			
Chloroethane	0.005	nd	nd	nv	nv			
Chloroform	0.003	nd	nd	0.006	0.13			
Chloromethane	0.020	nd	nd	nv	nv			
Dibromochloromethane	0.002	nd	nd	0.003	0.09			
1,2-Dibromoethane	0.002	nd	nd	nv	nv			
m-Dichlorobenzene	0.002	nd	nd	0.002	30			
o-Dichlorobenzene	0.002	nd	nd	0.002	0.88			
p-Dichlorobenzene	0.002	nd	nd	0.002	0.32			
1,1-Dichloroethane	0.002	nd	nd	0.002	3.0			
1,2-Dichloroethane	0.002	nd	nd	0.002	0.022			
1,1-Dichlroethylene	0.002	nd	nd	0.002	0.0024			
c-1,2-Dichloroethylene	0.002	nd	nd	nv	2.3			
t-1,2-Dichloroethylene	0.003	nd	nd	0.003	4.1			
1,2-Dichloropropane	0.002	nd	nd	0.002	0.019			
c-1,3-Dichloropropene	0.002	nd	nd	0.003	0.0066			
t-1.3-Dichloropropene	0.002	nd	nd	0.003	0.0066			
Ethylbenzene	0.002	nd	nd	0.002	0.28			
Methylene Chloride	0.010	nd	nd	0.003	1.1			
Styrene	0.002	nd	nd	0.002	1.2			
1,1,1,2-Tetrachloroethane	0.003	nd	nd	nv	0.019			
1,1,2,2-Tetrachloroethane	0.003	nd	nd	0.004	0.01			
Tetrachloroethylene	0.002	nd	nd	0.002	0.45			
Toluene	0.002	nd	nd	0.002	2.1			
1,1,1-Trichloroethane	0.002	nd	nd	0.009	26			
1,1,2-Trichloroethane	.002	nd	nd	0.002	0.28			
Trichloroethylene	0.003	nd	nd	0.004	1.1			

Table 3 (continued) Analytical Test Results - Soil - Volatile Organic Compounds (VOCs)								
	MDL	Soil Samp	oles (µg/g)	MOE Table 1	MOE Table 2			
Parameter	(µg/g)	TP6 G3	TP7 G4	Standards (µg/g)	Residential (µg/g)			
Trichlorofluoromethane	0.005	nd	nd	nv	nv			
1,3,5-Trimethylbenzene	0.003	nd	nd	nv	nv			
Vinyl Chloride	0.002	nd	nd	0.003	0.003			
Xylenes	0.004	nd	nd	0.002	25			
Notes: MDL - Method Detection Limit Ind Ind								

No VOC parameters were detected above the laboratory method detection limit, in Samples TP6-G3 and TP7-G4.

Table 4 Analytical Test Results - Soil - Polynuclear Aromatic Hydrocarbons (PAHs)									
	MDL	Soil Samp	les (µg/g)	MOE Table 1 Standards	MOE Table 2 Residential				
Parameter	mb L	TP8 G1	TP11 G1	(µg/g)	(µg/g)				
Acenaphthene	0.02	nd	nd	0.07	15				
Acenaphthylene	0.02	nd	0.03	0.08	100				
Anthracene	0.02	nd	0.03	0.16	28				
Benzo(a)anthracene	0.02	nd	0.13	0.74	6.6				
Benzo(a)pyrene	0.02	nd	0.15	0.49	1.2				
Benzo(b)fluoranthene	0.02	nd	0.22	0.47	12				
Benzo(g,h,i)perylene	0.02	nd	0.11	0.68	40				
Benzo(k)fluoranthene	0.02	nd	0.10	0.48	12				
Biphenyl	0.02	nd	0.06	nv	0.89				
Chrysene	0.02	nd	0.18	0.69	12				
Dibenz(a,h)anthracene	0.02	nd	0.03	0.16	1.2				
Fluoranthene	0.02	nd	0.20	1.1	40				
Fluorene	0.02	nd	0.02	0.12	340				
Indeno(1,2,3-cd)pyrene	0.02	nd	0.10	0.38	12				
1-Methylnaphthalene	0.02	nd	<u>0.56</u>	0.26	1.2				
2-Methylnaphthalene	0.02	nd	<u>0.68</u>	0.29	1.2				
Naphthalene	0.02	nd	<u>0.40</u>	0.09	4.6				
Phenanthrene	0.02	nd	0.37	0.69	40				
Pyrene	0.02	nd	0.16	1.0	250				
□ nd - N □ nv - ti	Not Detecte he MOE pro	ovides no value	es for these par exceed the MO	ameters E Table 1 standards					

Concentrations of 1- and 2-methylnaphthalene and naphthalene were detected in excess of the MOE Table 1 standards but below the Table 2 standards in Sample TP11-G1. No parameters were identified above the method detection limits, in soil Sample TP8-G1.

Table 5 Analytical Test Results - Soil - BTEX and PHC									
			S	oil San	nples ((µg/g)		MOE	MOE
Parameter	MDL	TP2 G2	TP3 G1	TP6 G3	TP7 G2	TP13 G1	TP20 G1	Table 1 (µg/g)	Table 2 (µg/g)
Benzene	0.002	nd	nt	nd	nt	nt	nd	0.002	0.24
Ethylbenzene	0.002	nd	nt	nd	nt	nt	nd	0.002	0.28
Toluene	0.002	nd	nt	nd	nt	nt	nd	0.002	2.1
Xylenes	0.002	nd	nt	nd	nt	nt	nd	0.002	25
F1 PHC (C6-C10)	10	nd	nd	nd	nd	nd	nd	nv	30
F2 PHC (C10-C16)	10	nd	nd	nd	nd	16	nd	nv	150
F3 PHC (C16-C34)	10	19	45	nd	nd	<u>265</u>	639	nv	400
F4 PHC (34-C50)	10	10	23	nd	nd	<u>221</u>	<u>158</u>	nv	2,800
Notes:	 nd - Not Detected (< MDL) nv - the MOE provides no values for these parameters Bolded and underlined values exceed the MOE Table 1 standards 								

Petroleum hydrocarbons in the F_3 and F_4 ranges were detected in four (4) of the six (6) tested samples. No value is provided by the MOE Table 1 standards for PHCs. In this situation, it is common industry practice to use the method detection limit as a guideline. The concentrations of F_3 and F_4 range PHCs in TP13-G1 and TP20-G1 were more than ten (10) times the method detection limit and are considered to be unacceptable for a sensitive Table 1 site. The concentration of fraction F_3 detected in TP20-G1 is also in excess of the MOE Table 2 standards. None of the BTEX parameters were detected in excess of the laboratory method detection limits.

Analytical Test Results for Groundwater

Samples were obtained from each of the monitoring wells located on site. Monitoring well MW1-08 was sampled twice. Where significant oil product was observed on a groundwater sample, the sample was not submitted for analytical testing. A total of six (6) out of eight (8) collected groundwater samples were submitted for analytical testing for a combination of metals, VOCs, PAH, BTEX and PHCs. Each sample submitted for metal analysis was field filtered. The results of the analytical testing are presented in Tables 6 to 9 along with the selected MOE standards. A copy of the laboratory test results are included in Appendix 1 of this report.

	Table 6 Analytical Test Results - Groundwater - Metals									
Parameter	MDL	Groundwate	er Samples - (μg/L)	MOE Table 1 Standards	MOE Table 2 Potable					
	(µg/L)	MW2	M03-08	(μg/L)	Standards (µg/L)					
Antimony	1	nd	nd	6	6.0					
Arsenic	10	nd	nd	25	25					
Barium	10	380	233	nv	1,000					
Beryllium	1	nd	nd	4	4.0					
Boron (avail.)	50	125	88	200	5,000					
Cadmium	1	nd	nd	0.5	5.0					
Chromium	50	nd	nd	8.9	50					
Chromium VI	10	nd	nd	10	50					
Cobalt	5	nd	nd	0.9	100					
Copper	5	nd	<u>5</u>	2.5	23					
Iron	200	265	481	nv	nv					
Lead	1	nd	<u>3</u>	1.0	10					
Mercury	0.1	nd	nd	0.02	0.12					
Molybdenum	5	nd	28	40	7,300					
Nickel	5	10	11	25	100					
Selenium	5	nd	nd	5	10					
Silver	1	nd	nd	0.25	1.2					
Sodium	200	47,200	163,000	nv	nv					
Thallium	1	nd	nd	0.5	2.0					
Vanadium	10	nd	<u>10</u>	6	200					
Zinc	20	nd	nd	20	1,100					
🗅 nv	- No current N	IOE standard;	nd - Not Detected (< M eed MOE Table 1 stand							

Copper, lead and vanadium concentrations were detected in MW3-08, in excess of the MOE Table 1 standards. The detected concentrations were in compliance with the Table 2 standards. It should be noted that the method detection limit for mercury is higher than the Table 1 standard, therefore, it is not known if any mercury is present in the groundwater samples in excess of the Table 1 standard.

Analytical Test Re	Table 7 Analytical Test Results - Groundwater - Volatile Organic Compounds (VOCs)							
	MDL	Grour	dwater S	ample (į	MOE Table 1	MOE Table 2		
Parameter	(µg/L)	MW2- 08	MW3- 08	MW1	MW2	Standards (µg/L)	Potable Standards (µg/L)	
Benzene	0.5	nd	nd	nd	nd	5	5.0	
Bromodichloromethane	0.4	nd	nd	nd	nd	5	5.0	
Bromoform	0.5	nd	nd	nd	nd	5	5.0	
Bromomethane	0.7	nd	nd	nd	nd	0.9	3.7	
Carbon Tetrachloride	0.5	nd	nd	nd	nd	0.5	5.0	
Chlorobenzene	0.4	nd	nd	nd	nd	15	30	
Chloroethane	1.0	nd	nd	nd	nd	nv	nv	
Chloroform	0.5	nd	nd	nd	nd	0.5	5.0	
Chloromethane	3.0	nd	nd	nd	nd	nv	nv	
Dibromochloromethane	0.5	nd	nd	nd	nd	0.5	5.0	
1,2-Dibromoethane	1.0	nd	nd	nd	nd	nv	nv	
m-Dichlorobenzene	0.4	nd	nd	nd	nd	2.5	630	
o-Dichlorobenzene	0.4	nd	nd	nd	nd	2.5	3.0	
p-Dichlorobenzene	0.4	nd	nd	nd	nd	1	1.0	
1,1-Dichloroethane	0.5	nd	nd	nd	nd	70	70	
1,2-Dichloroethane	0.5	nd	nd	nd	nd	5	5.0	
1,1-Dichlroethylene	0.5	nd	nd	nd	nd	0.66	0.66	
c-1,2-Dichloroethylene	0.4	nd	nd	nd	nd	70	70	
t-1,2-Dichloroethylene	1.0	nd	nd	nd	nd	100	100	
1,2-Dichloropropane	0.5	nd	nd	nd	nd	0.7	5.0	
c-1,3-Dichloropropene	0.4	nd	nd	nd	nd	0.7	1.4	
t-1.3-Dichloropropene	0.5	nd	nd	nd	nd	1.4	1.4	
Ethylbenzene	0.5	nd	0.9	nd	nd	2.4	2.4	
Methylene Chloride	4.0	nd	nd	nd	nd	50	50	
Styrene	0.4	nd	nd	nd	nd	4	100	
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	5	5.0	
1,1,2,2-Tetrachloroethane	0.6	nd	nd	nd	nd	1	1.0	
Tetrachloroethylene	0.5	nd	nd	nd	nd	5	5.0	
Toluene	0.5	nd	<u>1.7</u>	nd	nd	0.8	24	
1,1,1-Trichloroethane	0.4	nd	nd	nd	nd	10	200	
1.1.2-Trichloroethane	0.6	nd	nd	nd	nd	5	5.0	

Table 7 (Continued) Analytical Test Results - Groundwater - Volatile Organic Compounds (VOCs)							
	MDL	Groundwater Sample (µg/L)					MOE Table 2
Parameter	(µg/L)	MW2- 08	MW3- 08	MW1	MW2	Potable Standards (µg/L)	
Trichloroethylene	0.4	nd	nd	nd	nd	20	50
Trichlorofluoromethane	1.0	nd	nd	nd	nd	nv	nv
1,3,5-Trimethylbenzene	0.5	nd	nd	nd	nd	nv	nv
Vinyl Chloride	0.4	nd	nd	nd	nd	0.5	0.5
Xylenes	1.0	nd	1.1	nd	nd	72	300
Notes: MDL - Method Detection Limit Image: A constraint of the constraint of							

The concentration of toluene detected in Sample MW3-08 exceeds the MOE Table 1 standard although it is in compliance with the MOE Table 2 standard. The remaining parameters were detected at concentrations below both the Table 1 and Table 2 standards.

Table 8 Analytical Test Results - Groundwater - Polynuclear Aromatic Hydrocarbons (PAHs)								
	Groun	dwater Samples (µg/L)	MOE Table 1	MOE Table 2 Non potable				
Parameter	MDL (µg/L)	MW1-08*	Standards (µg/L)	Standards (μg/L)				
Acenaphthene	0.5	<u>1350</u>	1	20				
Acenaphthylene	0.05	<u>300</u>	1	310				
Anthracene	0.01	<u>185</u>	0.5	12				
Benzo(a)anthracene	0.01	<5.00	0.1	0.2				
Benzo(a)pyrene	0.01	<5.00	0.005	0.01				
Benzo(b)fluoranthene	0.05	<25.0	0.05	0.2				
Benzo(g,h,i)perylene	0.05	<25.0	0.1	0.2				
Benzo(k)fluoranthene	0.05	<25.0	0.05	0.2				
Biphenyl	0.05	<u>2430</u>	1	350				
Chrysene	0.05	<25.0	0.05	0.5				
Dibenz(a,h)anthracene	0.05	<25.0	0.1	0.2				
Fluoranthene	0.01	<5.00	1	130				
Fluorene	0.05	<u>2150</u>	1	280				
Indeno(1,2,3-cd)pyrene	0.05	<25.0	0.1	0.02				
1-Methylnaphthalene	0.05	<u>16700</u>	0.5	10				
2-Methylnaphthalene	0.05	<u>30200</u>	2.5	10				
Naphthalene	0.05	<u>7420</u>	7	21				
Phenanthrene	0.05	<u>4020</u>	1	63				
Pyrene	0.01	<u>252</u>	0.05	40				
Notes: MDL - Method Detection Limit Ind - Not Detected (< MDL)								

Free oil product was present on the groundwater sample submitted for PAH testing (MW1-08). Due to the presence of free product, the method detection limits were raised significantly, making the MDLs higher than the applicable standards. Where parameters were detected, they were all found in concentrations exceeding all MOE standards.

Table 9 Analytical Test Results - Groundwater - PHCs and BTEX									
Parameter	MDL (µg/L)		Groundwa	MOE Table 1	MOE Table 2				
		MW1-08 Sept.2	MW2-08 Sept.2	MW1 Sept.2	MW2 Sept.2	MW5 G1 Oct.28	Standards (µg/L)	Standards (µg/L)	
Benzene	0.5	nd	nd	nd	nd	nt	5	5.0	
Ethylbenzene	0.5	0.6	nd	nd	nd	nt	2.4	2.4	
Toluene	0.5	1	nd	nd	nd	nt	0.8	24	
Xylenes	1.0	11.5	nd	nd	nd	nt	72	300	
F₁ PHC	200	200	nd	nd	nd	nd	nv	1,000	
F ₂ PHC	100	<u>4,350,000</u>	nd	nd	nd	<u>75,600</u>	nv		
F ₃ PHC	100	<u>3,460,000</u>	nd	nd	nd	<u>56,100</u>	nv	1 000	
F₄ PHC	100	< 20,000	nd	nd	nd	<u>520</u>	nv	1,000	
Notes: Image: MDL - Method Detection Limit Image: nd - Not Detected (< MDL)									

As previously noted free oil product was present on sample MW1-08 obtained in September. This is reflected in the very high concentrations of F_2 and F_3 range PHCs detected in the sample. Elevated concentrations of F2 and F3 PHCs, in excess of all MOE standards were also detected in sample MW5 G1, obtained in October. Toluene was detected in MW1 above the MOE Table 1 standard, however the concentration was in compliance with the Table 2 standard. None of the PHC or BTEX parameters were detected in the remaining three (3) groundwater samples submitted for analysis.

Analytical Test Results for Sediment

A total of three (3) sediment samples were obtained from the three Lagoons present on the western portion of the subject site. The samples were submitted for analytical testing of metals, VOCs and/or PHCs. The results are contained in Tables 10 to 12 along with the selected MOE standards.

Parameter	MDL (µg/g)	Sedim	ent Samples	- (µg/g)	MOE Table 1 and 2 Sediment Standards (µg/g)	MOE Table 2 Soil Standards (µg/g)
		Lagoon 1	Lagoon 2	Lagoon 3		
Antimony	1	2	1	5	nv	13
Arsenic	1	1	nd	2	6	20
Barium	10	239	122	241	nv	750
Beryllium	0.5	0.8	nd	0.8	nv	1.2
Boron (avail.)	0.5	0.5	nd	2.0	nv	1.5
Cadmium	0.5	0.6	nd	<u>0.8</u>	0.6	12
Chromium	5	<u>46</u>	22	<u>54</u>	26	750
Chromium VI	0.4	nd	nd	nd	nv	8.0
Cobalt	5	11	7	12	50	40
Copper	5	<u>32</u>	<u>18</u>	<u>38</u>	16	225
Iron	200	46,300	28,200	40,300	nv	nv
Lead	1	12	6	22	31	200
Mercury	0.1	nd	nd	nd	0.2	10
Molybdenum	1	nd	nd	nd	nv	40
Nickel	5	<u>22</u>	14	<u>20</u>	16	150
Selenium	1	nd	nd	nd	nv	10
Silver	0.3	nd	nd	nd	0.5	20
Thallium	1	nd	nd	nd	nv	4.1
Vanadium	10	59	35	49	nv	200
Zinc	20	181	41	2,040	12	600

Copper and zinc were detected at concentrations above the sediment standards in samples recovered from each of the lagoons. Nickel and chromium were found at concentrations in excess of the sediment standards in Lagoons 1 and 3. Cadmium was also detected in Lagoon 3 at a concentration above the sediment standard.

Based on our understanding of the proposed development to be conducted on the subject site, the sediment is to be removed from the lagoons and placed at a select location on the property, making the MOE Table 2 soil standards applicable to this material. None of the tested parameters were detected in excess of the MOE Table 2 soil standards.

Table 11 Analytical Test Results - Sediment - PHCs and BTEX								
	MDL (µg/g)	Sedime	ent Samples (MOE Table 2	MOE Table 2 Standards -			
Parameter		Lagoon 1	Lagoon 2	Lagoon 3	Standards - Sediment (μg/g)	Soil (µg/g)		
Benzene	0.002	nd	nt	nd	nv	0.24		
Ethylbenzene	0.002	nd	nt	nd	nv	0.28		
Toluene	0.002	nd	nt	nd	nv	2.1		
Xylenes	0.004	nd	nt	nd	nv	25		
$F_1 PHC (C_6 - C_{10})$	10	nt	nd	nt	nv	30		
F ₂ PHC (C ₁₀ -C ₁₆)	10	nt	nd	nt	nv	150		
F ₃ PHC (C ₁₆ -C ₃₄)	10	nt	94	nt	nv	400		
F ₄ PHC (C ₃₄ -C ₅₀)	10	nt	nd	nt	nv	2800		
Notes:	MDL - Method Detection Limit nd - Not Detected (< MDL) nv - the MOE provides no values for these parameters bolded and underlined values exceed the MOE Table 1 standards							

No BTEX parameters were detected above the method detection limits, in any of the sediment samples submitted for testing. A concentration of PHC fraction F_3 was detected in the sample collected from Lagoon 2. The MOE does not currently provide values for PHC parameters in sediment, however the detected concentration is well below the MOE Table 2 soil standard.

Table 12 Analytical Test Results - Groundwater - Volatile Organic Compounds (VOCs)							
	MDL	Sediment Sa	mples (µg/g)	MOE Table 2 Standards -	MOE Table 2 Standards - Soil (µg/g)		
Parameter	(µg/g)	Lagoon 1	Lagoon 3	Sediment (µg/g)			
Benzene	0.002	nd	nd	nv	0.24		
Bromodichloromethane	0.002	nd	nd	nv	0.12		
Bromoform	0.002	nd	nd	nv	0.11		
Bromomethane	0.003	nd	nd	nv	0.061		
Carbon Tetrachloride	0.002	nd	nd	nv	0.10		
Chlorobenzene	0.002	nd	nd	nv	2.4		
Chloroethane	0.005	nd	nd	nv	nv		
Chloroform	0.003	nd	nd	nv	0.13		
Chloromethane	0.02	nd	nd	nv	nv		
Dibromochloromethane	0.002	nd	nd	nv	0.09		
1,2-Dibromoethane	0.002	nd	nd	nv	nv		
m-Dichlorobenzene	0.002	nd	nd	nv	30		
o-Dichlorobenzene	0.002	nd	nd	nv	0.88		
p-Dichlorobenzene	0.002	nd	nd	nv	0.32		
1,1-Dichloroethane	0.002	nd	nd	nv	3.0		
1,2-Dichloroethane	0.002	nd	nd	nv	0.022		
1,1-Dichlroethylene	0.002	nd	nd	nv	0.0024		
c-1,2-Dichloroethylene	0.002	nd	nd	nv	2.3		
t-1,2-Dichloroethylene	0.003	nd	nd	nv	4.1		
1,2-Dichloropropane	0.002	nd	nd	nv	0.019		
c-1,3-Dichloropropene	0.002	nd	nd	nv	0.0066		
t-1.3-Dichloropropene	0.002	nd	nd	nv	0.0066		
Ethylbenzene	0.002	nd	nd	nv	0.28		
Methylene Chloride	0.01	nd	nd	nv	1.1		
Styrene	0.002	nd	nd	nv	1.2		
1,1,1,2-Tetrachloroethane	0.003	nd	nd	nv	0.019		
1,1,2,2-Tetrachloroethane	0.003	nd	nd	nv	0.01		
Tetrachloroethylene	0.002	nd	nd	nv	0.45		
Toluene	0.002	nd	nd	nv	2.1		
1,1,1-Trichloroethane	0.002	nd	nd	nv	26		
1.1.2-Trichloroethane	0.002	nd	nd	nv	0.28		

Table 12 (Continued) Analytical Test Results - Groundwater - Volatile Organic Compounds (VOCs)								
	MDL	Sediment (µg/	•	MOE Table 2 Standards - Sediment (µg/g)	MOE Table 2 Standards - Soil (μg/g)			
Parameter	(µg/L)	Lagoon 1	Lagoon 3					
Trichloroethylene	0.003	nd	nd	nv	1.1			
Trichlorofluoromethane	0.005	nd	nd	nv	nv			
1,3,5-Trimethylbenzene	0.003	nd	nd	nv	nv			
Vinyl Chloride	0.002	nd	nd	nv	0.003			
Xylenes	0.002	nd	nd	nv	25			
nd - No nv - the	 nd - Not Detected (< MDL) nv - the MOE provides no values for these parameters 							

VOC parameters were not identified above the method detection limits, in either sample submitted for analytical testing.

Analytical Test Results for Lead

It is being proposed that the concrete rubble from the former buildings is to be used as fill material during the future development of the site. Two samples of paint from the concrete rubble were obtained and submitted for lead testing to determine if the paint is considered to be lead based. The samples represented the two primary colours of paint observed on the concrete (white and blue). Lead is prescribed as a designated substance under Ontario Regulation 843 of the Occupational Health and Safety Act. Any paint with a lead concentration in excess of 5,000 μ g/g is considered to be lead based. Any concrete covered in lead based paint would be considered unsuitable for use as a fill material.

The analytical test results, included in Appendix 1, indicate that both paint samples had a lead concentration below 50 μ g/g. The paint on the concrete rubble is not a lead based product.

5.0 ASSESSMENT AND RECOMMENDATIONS

5.1 <u>Assessment</u>

A Phase II ESA was conducted on the property known as the Former Appletex Mill addressed 116-122 Old Mill Lane in the Village of Appleton, Ontario. The purpose of the Phase II ESA was to further investigate the soil and groundwater conditions on the subject site in comparison to the current MOE standards.

Soil

A total of twelve (12) soil samples, obtained from test pits and boreholes placed on site were submitted for analytical testing of PHCs, BTEX, VOCs, PAHs and/or metals. Metal parameters, in excess of the Table 2 standards were detected in TP11, TP16 and TP20. PHCs were also detected in excess of the Table 2 standards in TP20.

During the former soil remediation program, conducted in April and May of 2007, "clean" material was stockpiled onsite with the intent to conduct further testing prior to determining its usability on the subject site. During the current Phase II-ESA, TP 11 and TP 16 were placed in the stockpiled material and as noted above, analytical testing identified contaminant concentrations in excess of the applicable MOE Table 2 standards. The stockpiled soil was subsequently removed from the subject site and disposed of at a registered waste disposal facility.

During the previous assessment, conducted by WESA, it was estimated that approximately 7,200 m³ of buried waste was present in the vicinity of TP20. It is our understanding that none of this buried waste was removed and therefore remains on the subject site. Based on the results of current and previous analytical testing, the waste material is contaminated in excess of the MOE Table 2 standards and requires disposal at a registered waste disposal facility.

Analytical testing conducted during the 2007 remediation program identified PHC contaminated soil, in excess of all MOE standards, along the western wall of the remediation excavation, adjacent to the Mississippi River. The extent of the contamination has not been delineated. It is estimated that approximately 300 m³ of contaminated soil may remain in this area.

Groundwater

A total of six (6) groundwater samples, obtained during two (2) sampling events, were submitted for analytical testing of a combination of metals, PHCs and VOCs. Two (2) of the samples were obtained from monitoring wells installed by others in 1994. The remaining four (4) samples were obtained from monitoring wells installed by Paterson as part of the current investigation.

Petroleum free product was observed in MW1-08 and MW5-08 located in the area of the former remediation. Analytical testing identified elevated levels of petroleum hydrocarbons, in excess of all MOE standards, in MW1-08 and MW4-08. The remaining detected parameters were in compliance with the Table 2 standards for a potable groundwater condition.

Sediment

Three (3) sediment samples , one (1) from each lagoon, were submitted for analytical testing of metal, BTEX and PHC parameters. Copper and zinc were detected in concentrations above the MOE Table 2 sediment standards in each of the lagoons. Nickel and chromium were found in excess of the sediment standards in Lagoons 1 and 3. A cadmium concentration in excess of the applicable standard was also detected in Lagoon 3.

Based on our understanding of the proposed redevelopment of the subject property, the lagoons will be filled in upon removing the impacted sediment. The impacted sediment will be managed elsewhere on site where the less stringent Table 2 standards for soil is applicable. None of the tested parameters were detected in excess of the MOE Table 2 soil standards.

No BTEX parameters were detected in the tested sediment standards. F_3 range PHCs were detected in the sample collected from Lagoon 2. The MOE does not currently have standards for PHC parameters in sediment. However the detected concentration is in compliance with the MOE Table 2 standards for soil. No VOC parameters were detected above the laboratory method detection limits, in the sediment samples collected from Lagoons 1 and 3.

5.2 <u>Recommendations</u>

Soil

Soil contaminated with various metal and PHC parameters in excess of the MOE Table 2 standards is located immediately west of the former remediation excavation and in the vicinity of TP20, as shown on Drawing: PE1114-4. Remediation of this soil is required prior to the redevelopment of the subject property and prior to applying for a Record of Site Condition (RSC). The contaminated soil west of the former excavation will require remediation to Table 1 standards due to the proximity (less than 30 m) to the Mississippi River, while the remaining impacted soil outside the sensitive zone will have the remediation criteria compared to Table 2 standards.

Prior to remediation activities, an MOE Regulation 347/558 leachate analysis of a representative sample of impacted soil will be required to dispose of the material at an approved waste disposal facility. It is recommended that a representative from our environmental division be present during the soil remediation program to direct the excavation contractor and to conduct confirmatory sampling.

Groundwater

Petroleum free product was identified in the three (3) monitoring wells installed at the top of the slope, within the previous remediation excavation. Remediation of the groundwater is necessary prior to the redevelopment of the subject land.

Two (2) remedial options have been considered:

Option A - Pump and treat system via a series of recovery wells

The advantage of this option is that it will be more economical in addressing this issue. The main disadvantage is that it takes a long time (2 to 5 years) and it may not be able to completely remove all free product.

• Option B - Open excavation with a treatment system

The advantage of Option B is that in a very short period of time (4 to 6 weeks), the free product and impacted groundwater can be recovered and treated before backfilling. A trench excavated into the bedrock extending to 1 m below the current level of the Mississippi River is required. The main advantage of the trench excavation is that it will expose the bedrock face and allow any free product to flow into the trench. Free product recovery will be facilitated by this approach and the success rate will be greater. The disadvantage with Option B is the higher cost of blasting and excavating the bedrock to construct the trench.

The bedrock would be blasted to a depth below the level of the Mississippi River to draw the surrounding groundwater into the trench and collect the free petroleum product on the surface of the water. The petroleum product and impacted groundwater would be pumped over a period of time and disposed off-site by a licenced pumping contractor or treated on site prior to surface discharging, under the supervision of personnel from our environmental division. Confirmatory sampling of the groundwater would be conducted periodically to determine whether the hydrocarbon concentrations have been effectively lowered.

Blast-rock excavated from the trench will be assessed to determine whether or not it has been impacted with hydrocarbons. "Clean" rock will be stockpiled for future use onsite. Rock that has been impacted with hydrocarbons will be spread and aerated on site.

Once confirmatory sampling has indicated that the groundwater has been remediated, the trench will be backfilled.

• Option C - In-Situ Bioremediation

Another potential remedial option is to use an in-situ bioremediation approach which would involve the injection of a solution into injection wells. The solution would aid in the biodegradation of the petroleum product. Subsequent monitoring of the groundwater would be required to determine the condition of the groundwater. This is not the preferred remedial option as pockets of oil may remain within the bedrock fissures and there is always the potential of causing the contamination to spread and spill into the Mississippi River.

Sediment

As mentioned previously, analytical testing of the sediment in Lagoons 1 and 2, conducted by the MOE in June of 2008, indicated metal concentrations in excess of the Lowest Effect Level Guideline as per the MOE document entitled *Guidelines for the Management and Protection of Aquatic Sediment Quality in Ontario*, dated August of 1993. One (1) parameter detected in the sample collected from the Lagoon 2 discharge apron also exceeded the Severe Effect Level Guideline. No volatile organic compound (VOC) parameters or polychlorinated biphenyl (PCB) parameters were detected in any of the samples submitted for analysis. These results were subsequently compared to the MOE Table 2 standards for both sediment and soil. Several parameters are in excess of the sediment standards. However, all concentrations are in compliance with the soil standards.

Based on these test results as well as those identified during the current sampling program, it is recommended that the impacted sediment be removed from the lagoons and placed elsewhere on the subject property where the Table 2 standards for soil will be applicable. Confirmatory sampling of the sediment remaining within the lagoons should be conducted prior to backfilling with clean material, which will consists of a mixture of blast rock and soil excavated from elsewhere on site.

Datersongroup Ottawa Kingston North Bay

6.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with the agreed scope-of-work and the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those described by the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Carlgate Developments. Permission and notification from the above noted party and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

unch

Karyn Munch, P.Eng.

Carlos P. Da Silva, P. Eng

Report Distribution:

- Carlgate Developments (3 copies)
- Paterson Group Inc. (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TEST RESULTS

patersongroup

Consulting Engineers

SOIL PROFILE AND TEST DATA

Monitoring Well Construction

500

Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

Phase II-Environmental Site Assessment **Former Appletex Mill**

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7 Appleton, Ontario Ground surface elevations provided by G. A. Smith Surveying Ltd. DATUM FILE NO. **PE1114** REMARKS HOLE NO. MW 1-08 DATE 26 Aug 08 BORINGS BY CME 55 Power Auger SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE 0/0 Lower Explosive Limit % 40 80 20 60 **GROUND SURFACE** 0+127.46..... FILL: Silty sand with gravel AU 1 0.86 RC 1 91 0 1+126.46RC 2 90 60 2+125.46 3+124.46RC 3 88 82 4+123.46 RC 4 100 44 5+122.46 6+121.46 **BEDROCK:** Limestone 5 RC 90 73 7+120.46 RC 6 95 92 8+119.46 9+118.46 RC 7 78 100 10+117.46 11+116.46 RC 8 97 80 RC 9 <u>12.1</u>9 100 100 12+115.46 End of Monitoring Well (GWL @ 9.86m-Sept. 2/08) 300 200 400 100

patersongro	MIR	Consulting	SOIL PROFILE AND TEST DATA							
28 Concourse Gate, Unit 1, Ottawa, ON K2E 7			Phase II-Environmental Site Assessment Former Appletex Mill Appleton, Ontario							
DATUM Ground surface elevations p	rveying Ltd.		FILE NO.	PE1114	4					
BORINGS BY CME 55 Power Auger		DAT	TE 26 Aug 08		HOLE NO.	MW 2	-08			
	ы	SAMPLE		Pen.	Resist. Blow	/s/0.3m				

BORINGS BY CME 55 Power Auger				U		26 Aug 08				
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH ELE (m) (m)	V.	Resist. Blows/0.3m 50 mm Dia. Cone	g Well ction	
GROUND SURFACE	STRATA	ЭДХТ	NUMBER	% RECOVERY	N VALUE or RQD		C Low 20	er Explosive Limit % 40 60 80	Monitoring Well Construction	
FILL: Silty sand with gravel and concrete pieces						0-128.0				
1.90	19191919191919 1919191919191	_ RC	1	85	73	2-126.0				
		RC	2	93	60	3-125.0			2024 ու երերերին երերերին երերերին երերերին երեր 2025 դեսերին երերերին երերերին երերերին երերերին երեր	
		RC	3	100	100	5-123.0	8			
BEDROCK: LImestone		RC	4	97	87	6-122.0				
		RC	5	92	82	8-120.0	· · · · · · · · · · · · · · · · · · ·			
		RC	6	100	93	10-118.0				
		RC	7	93	88	11-117.0				
End of Monitoring Well (GWL @ 7.30m-Sept. 2/08)	$\frac{1}{1}$	_ RC	8	100	100	12-116.0	8			
								200 300 400 50 ech 1314 Rdg. (ppm) Gas Resp. △ Methane Elim.	†)0	

patersongr

200

100

300

Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

400

500

ring Well truction

Monitori Constr

notoroonar			Con	sulting		SOIL	. PRO	FILE AN	ND TES	Γ DATA	
28 Concourse Gate, Unit 1, Ottawa,			Engi	ineers	Pł Fc	nase II-Env ormer App opleton, C	letex Mil		sessment		
DATUM Ground surface elevation	s provid	led by (G. A. S	Smith S		•			FILE NO.	PE 1114	1
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	26 Aug 08				MW 3-	-08
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. (g Well
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(,	()	• Lowe	r Explosive	Limit %	Monitoring Well
GROUND SURFACE		, ,		Ř	А	- 0-	-121.79	20	40 60	80	
	.05	ss	1	33	2						
FILL: Brown silty sand with clay and gravel		ss	2	17	12	1-	-120.79				
2	.21	SS AU	3 5	4	4	2-	-119.79	A 			
FILL: Grey to black silty clay		ss	4	17	2	3-	-118.79	·			
with gravel	.73	ss	6	17	3		110.70	·····		• • • • • • • • • • • • • • • • • • • •	
GLACIAL TILL	.62	ss	7	29	74	4-	-117.79				
		ss	8	55	33	5-	-116.79				
BEDROCK: Limestone		RC	1	96	83	6-	-115.79	·····	•••••	•••••••••••••••••••••••••••••••••••••••	
		RC	2	95	90		-114.79				
7	. <u>62</u>	RC	3	90	70		114.75	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
-											1
(GWL @ 2.70m-Sept. 2/08)											

nate	rsonaroun	Consulting	SOIL PROFILE AN	ND TEST DAT		
28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7	Engineers	Phase II-Environmental Site As Former Appletex Mill Appleton, Ontario	sessment			
DATUM G	round surface elevations provided by	G. A. Smith Su	irveying Ltd.	FILE NO.		

REMARKS

FILE NO.	PE1114
HOLE NO.	TP 1

Full Gas Resp. \triangle Methane Elim.

BORINGS BY Backhoe				D	ATE 2	26 Aug 08			HOLE NO.	TP 1	
SOIL DESCRIPTION	РІОТ		SAN	IPLE	1	DEPTH	ELEV.		Pen. Resist. Blows/0.3m 50 mm Dia. Cone		
GROUND SURFACE	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		er Explosive 40 60	e Limit %	Monitoring Well Construction
25mm Topsoil over brown SILTY SAND with some clay and gravel End of Test Pit TP terminated on bedrock surface @ 0.48m depth		G	1				-124.90	100 Gasted	200 300 ch 1314 Rd) 400 f	500

patersongroup	Consulting	SOIL PROFILE AND TES
patersongroup	Engineers	Phase II-Environmental Site Assessment
28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7		Former Appletex Mill

DATUM Ground surface elevation	ons provid	ed by (G. A. S	Smith	Survey	ving Ltd.			FILE NO.	PE1114		
REMARKS									HOLE NO)	r	
BORINGS BY Backhoe				D	ATE 2	26 Aug 08		[TP 2			
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blo) mm Dia	ows/0.3m . Cone	g Well ction	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD	(11)	(11)	○ Lowe	r Explosi	ve Limit %	Monitoring Well Construction	
GROUND SURFACE	N		Z	RE	z	0	107.00	20	40 6	0 80	ž	
TOPSOIL	0.10					0-	-127.28					
FILL: Brown silty sand with cinder blocks	0.53	G	1							· · · · · · · · · · · · · · · · · · ·		
Brown SILTY SAND												
End of Test Pit	0.81	G	2									
TP terminated on bedrock surface @ 0.81m depth												

:

÷ ; i 1

500

400

100 200

300

Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. \triangle Methane Elim.

patersongroup		n	Con	sulting ineers		SOIL	DATA				
28 Concourse Gate, Unit 1, Ottawa, Ol		-	Eng	ineers	Fo	rmer App	letex Mill		sessment		
DATUM Ground surface elevations	orovide	ed by (G. A. :	Smith S		pleton, C /ing Ltd.	Jilano		FILE NO.		
REMARKS									HOLE NO.	PE1114	
BORINGS BY Backhoe				DA	TE 2	26 Aug 08				TP 3	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	-	esist. Blow 0 mm Dia. C		g Well ction
	STRATA	ТҮРЕ	UMBER					 Lowe 	r Explosive	Limit %	Monitoring Well Construction
GROUND SURFACE	ũ		IN	RE(z ö	0	-127.94	20	40 60	80	Σ
FILL: Dark brown silty clay with gravel and brick pieces		G	1				- 126.94				
Grey-brown SILTY CLAY with sand <u>2.34</u>		_ G	2			2-	- 125.94				¥
TP terminated on bedrock surface @ 2.34m depth (GWL @ 1.6m depth)									200 300 ch 1314 Rdg as Resp. △ M		00

patersongroup			Con	sulting ineers		SOIL	DATA				
28 Concourse Gate, Unit 1, Ottawa, ON		-	Eng	ineers	For	mer App	letex Mill		sessment		
DATUM Ground surface elevations p			G. A. :	Smith S		oleton, C ng Ltd.	Jinano		FILE NO.		
REMARKS									HOLE NO.	PE1114	
BORINGS BY Backhoe	1			DA	TE 20	6 Aug 08			HOLE NO.	TP 4	
SOIL DESCRIPTION	PLOT	SAMPLE DEPTH ELEV.						esist. Blows 0 mm Dia. C		Well	
		曰	ER	ERY	E G	(m)	(m)	• •			Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				r Explosive		Nonit Con
GROUND SURFACE				Ř	2	0-	-128.92	20	40 60	80	2
FILL: Brown sand and gravel with rubble 0.97		G	1					······································			
<u>0.9</u> /						1-	-127.92				
GLACIAL TILL: Brown silty sand with clay, gravel and cobbles 2.67 End of Test Pit TP terminated on bedrock surface @ 2.67m depth		G	2			2-	-126.92				
									200 300 ch 1314 Rdg as Resp. △ Me		00

patersongroup				sulting ineers		SOIL	ND TEST	DATA			
		-	Eng	ineers	1	ase II-Env ormer App			sessment		
28 Concourse Gate, Unit 1, Ottawa, ON DATUM Ground surface elevations p				Smith S	Ap	pleton, C					
DATUM Ground surface elevations p		euby	Э. А	311111 3	burvey	ng Liu.			FILE NO.	PE1114	
BORINGS BY Backhoe				ПА	TE 2	26 Aug 05			HOLE NO.	TP 5	
	F .		SAN	/IPLE			,	Pen B	esist. Blow	s/0.3m	
SOIL DESCRIPTION	PLOT			×		DEPTH (m)	ELEV. (m)		0 mm Dia. C		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			○ Lowe	r Explosive	l imit %	nitorir
GROUND SURFACE	ST	H	15N	REC	N V OL			20	40 60	80	δΩ
						0-	-128.72				
								• • • • • • • • • • •			
								• • • • • • • • • • •		÷	
FILL: Brown silty sand with											
gravel and clay		-									
		G	1					•			
						1-	127.72				
1.30											
GLACIAL TILL: Brown silty		G	2					A			
clay with sand and gravel		-						• • • • • • • • • •			
<u>1.83</u>									<u></u>	÷	
End of Test Pit											
TP terminated on bedrock surface @ 1.83m depth											
								100	200 300	400 50	00 00
									ch 1314 Rdg as Resp. △ Me		

patersongro		n	Con	sulting	g SOIL PROFILE AND TEST DATA										
patersongie		Υ	Eng	ineers				ntal Site As	sessment						
28 Concourse Gate, Unit 1, Ottawa, ON	K2E	7T7				ormer App opleton, C		l							
DATUM Ground surface elevations p	rovide	ed by (G. A. S	Smith S	urve	ying Ltd.			FILE NO.	PE1114	ł				
REMARKS					HOLE NO.										
BORINGS BY Backhoe				DA	TE 2	26 Aug 08	5			TP 6					
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blow 0 mm Dia. 0		l Well				
	STRATA I	ТҮРЕ	NUMBER	8	I VALUE or RQD	(m)	(m)	○ Lowe	r Explosive	Limit %	Monitoring Well Construction				
GROUND SURFACE				R	z		-127.70	20	40 60	80	≥				
FILL: Dark brown silty sand with topsoil		G	1				- 127.70		·						

							100	200	30)0 dg. (p	400	500
End of Test Pit TP terminated on bedrock surface @ 1.20m depth												
GLACIAL TILL: Grey-brown silty clay with sand, gravel and cobbles	0.99	·	3	1	-126.70	A	2					
Brown SILTY SAND , some clay	•	.; . . . G	2									
	0.53	· · · ·										

▲ Full Gas Resp. \triangle Methane Elim.

nat	ersongro	nin	Consulting	SOIL	- PRO	FILE AN	ND TEST DATA						
-	urse Gate, Unit 1, Ottawa, ON	-	Engineers	Phase II-En Former App Appleton, (letex Mill		sessment						
DATUM	Ground surface elevations p	rovided by	G. A. Smith Su	rveying Ltd.			FILE NO.	PE1114					
REMARKS BORINGS B	Y Backhoe		DA	E 26 Aug 08	5		HOLE NO.	TP 7					

SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Lower Explosive Limit % 20 40 50
GROUND SURFACE	IS	H	Ĩ	REC	N N			20 40 60 80 S
FILL: Brown silty sand with gravel		_ G	1			0-	- 128.63	
FILL: Dark brown silty sand with clay and concrete pieces		G	2					····
FILL: Brown silty sand with gravel		_ G	3			1-	-127.63	φ.
GLACIAL TILL: Light brown silty sand with clay, gravel and cobbles		G	4					
End of Test Pit TP terminated on bedrock surface @ 2.34m depth						2-	-126.63	100 200 300 400 500 Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongro		n	Con	sulting ineers	SOIL PROFILE AND TEST DATA									
28 Concourse Gate, Unit 1, Ottawa, ON		-	Eng	ineers	Fo	ormer App	letex Mil		sessment					
DATUM Ground surface elevations p			G. A.	Smith S	_	ppleton, C ying Ltd.	Ontario		FILE NO.					
REMARKS		,				, ,				PE1114				
BORINGS BY Backhoe				DA	ATE	26 Aug 08			HOLE NO.	TP 8				
	텅		SAN	IPLE		DEPTH	ELEV.		esist. Blow		Vell			
SOIL DESCRIPTION	A PLOT		~	ХХ	Щ о	(m)	(m)	• 5	0 mm Dia. C	one	Monitoring Well Construction			
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			 Lowe 	r Explosive	Limit %	Const			
GROUND SURFACE	Ω Ω	- .	N	REC	z ö	- 0-	-128.92	20	40 60	80	ž			
							120.32							
										÷				
														
FILL: Brown silty sand with clay, cobbles, steel and topsoil		_												
		G	1					A						
						1-	-127.92							
1.78		G	2											
End of Test Pit														
TP terminated on bedrock														
surface @ 1.78m depth														
								100	200 300	400 50	00			
								Gasteo	ch 1314 Rdg as Resp. \triangle Me	. (ppm)	~			

patersongro		n	Con	sulting ineers	SOIL PROFILE AND TEST DATA									
28 Concourse Gate, Unit 1, Ottawa, ON		-	Eng	ineers	F	hase II-Env ormer App	letex Mill		sessment					
DATUM Ground surface elevations p			G. A. S	Smith S		ppleton, C evina Ltd.	Ontario		FILE NO.					
REMARKS		,				jg				PE1114				
BORINGS BY Backhoe				DA	ATE	26 Aug 08		-	HOLE NO.	TP 9				
	텅		SAN	IPLE		DEPTH	ELEV.		esist. Blow		Vell			
SOIL DESCRIPTION	A PLOT		œ	RY	Ĕ٥	(m)	(m)	• 5	0 mm Dia. C	one	Monitoring Well Construction			
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of ROD			 Lowe 	r Explosive	Limit %	Const			
GROUND SURFACE	ß	_	Z	RE	zÖ		-128.84	20	40 60	80	ž			
FILL: Sand and gravel with concrete and steel pieces 1.47 End of Test Pit TP terminated on bedrock surface @ 1.47m depth		G	1				- 127.84							
									200 300 ch 1314 Rdg as Resp. △ Me		00			

patersongroup	
---------------	--

Consulting Engineers Phase II-Envir

SOIL PROFILE AND TEST DATA

 \blacktriangle Full Gas Resp. \bigtriangleup Methane Elim.

Phase II-Environmental Site Assessment Former Appletex Mill Appleton. Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATUM Ground surface elevations	evations provided by G. A. Smith Surveying Ltd. FILE NO.												
		eu by (J. A. (SINIU	Suivey		PE1114						
REMARKS									HOLE NO.	TP10			
BORINGS BY Backhoe					ATE 2	26 Aug 08							
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blov) mm Dia.		ig Well uction		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD		. ,	O Lowe	Explosiv	e Limit %	Monitoring Well Construction		
GROUND SURFACE	0		Z	RE	z ^o	0-	-127.73	20	40 60	80	ΣŬ		
TOPSOIL		_ G	1				127.70						
Brown SILTY SAND , trace clay 0.48		G	2					 ۲		· · · · · · · · · · · · · · · · · · ·			
GLACIAL TILL: Grey-brown silty clay with sand, gravel and cobbles		_ G	3										
0.99													
TP terminated on bedrock surface @ 0.99m depth													
								100 Gastec	200 300 h 1314 Ro) 400 50 lg. (ppm)	00		

patersongro		n	Cons	sultina		T DATA					
28 Concourse Gate, Unit 1, Ottawa, ON		-	Engi	sulting neers	For		letex Mil		sessment		
DATUM Ground surface elevations p	rovide	d by (G. A. S	Smith S		=			FILE NO.	PE1114	
REMARKS									HOLE NO.		•
BORINGS BY Backhoe				DA	TE 2	6 Aug 08		1		TP11	1
	PLOT		SAM	IPLE		DEPTH	ELEV.		esist. Blow		Vell
SOIL DESCRIPTION			ж	RY	Що	(m)	(m)	• 5	0 mm Dia. (Cone	Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			○ Lowe	r Explosive	e Limit %	Const
GROUND SURFACE	S	-	N	RE(zÖ	0-	-128.34	20	40 60	80	ž
FILL: Silty sand with gravel, concrete, metal and slag pieces		G	1			0-	- 120.34	· · · · · · · · · · · · · · · · · · ·	······································		
		G	2					4			
Brown SILTY CLAY with sand						1-	-127.34				
4.00									·······		
End of Test Pit	/////							100	200 300	400 50	
								Gasteo	200 300 ch 1314 Rdg	g. (ppm))Ú

Gasteen is it hug. (ppin)
▲ Full Gas Resp. △ Methane Elim.

patersongro		n	Con	sultin	g	SOIL PROFILE AND TEST DATA									
28 Concourse Gate, Unit 1, Ottawa, Of	Engi	ineers	Fo	hase II-En ormer App ppleton, (letex Mill		sessment								
DATUM Ground surface elevations p	orovide	ed by (G. A. S	Smith	Surve	ying Ltd.			FILE NO.	PE1114					
REMARKS BORINGS BY Backhoe				0	ATE	26 Aug 08	1		HOLE NO.	TP12					
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. C						

SOIL DESCRIPTION		PLOT		SAN	IPLE		DEPTH	ELEV.	1	Per •		esis 0 m					n	Well	
		STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0	Lo	we	r Ex	plo	sive	e Li	mit	%	Monitoring Well	חופווס
GROUND SURFACE		ธ	н	ŊN	REC	N OL				20		40		60		80		ž	2
FILL: Brown sand with gravel	<u>0.15</u>	\otimes	-				0-	-128.16										-	
TOPSOIL		×××	G	2							•								
Brown SILTY CLAY with sand	_ <u>0</u> . <u>3</u> 3	XA	-														; ; ; ;		
	0. <u>53</u>		– G – G	1 3															
																		•	
			_								•								
GLACIAL TILL: Light brown silty sand with clay, gravel and			G	4			1-	-127.16											
cobbles								127.10											
	<u>1.37</u>																		
End of Test Pit		<u>,, , , , , , , , , , , , , , , , , , ,</u>																	
TP terminated on bedrock surface @ 1.37m depth																			
												20 20		300 200		400		 500	
												:h 1 as Re					n) Elim		

patersongro	וור	n	Con	sulting ineers		SOIL	PRO	FILE AI	ND TEST	DATA		
28 Concourse Gate, Unit 1, Ottawa, Ol		-	Eng	ineers	Forr		letex Mill		sessment			
DATUM Ground surface elevations	provide	ed by (G. A. :	Smith S					FILE NO.	PE1114		
REMARKS									HOLE NO.		•	
BORINGS BY Backhoe		1		DA	TE 26	6 Aug 08				TP13		
SOIL DESCRIPTION	PLOT		SAN	IPLE	[esist. Blows 0 mm Dia. C	Monitoring Well Construction		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	○ Lowe	er Explosive Limit %			
GROUND SURFACE	N.		n N	REC	z ⁰		100.05	20	40 60	80	ΣO	
FILL: Sand and gravel with topsoil		G	1				- 128.85					
1.12 Brown SILTY SAND , some clay 1.73		G	2									
GLACIAL TILL: Light brown silty sand with clay, gravel and cobbles		G	3				- 126.85					
3.0	5 <u>\^^^/</u>	+				5	120.00					
TP terminated on bedrock surface @ 3.05m depth									200 300 ch 1314 Rdg as Resp. △ Me	. (ppm)	00	

patersongroup			Cons	sulting neers	SOIL PROFILE AND TEST DATA								
28 Concourse Gate, Unit 1, Ottawa,		-	Engi	neers	Fo	ase II-Env rmer App pleton, C	letex Mil	ntal Site A I	lsse	ssment	:		
DATUM Ground surface elevation	is provide	ed by (G. A. S	Smith Su	urvey	ing Ltd.			F	ILE NO.	PF	E1114	L
REMARKS									н	IOLE NO.		P14	_
BORINGS BY Backhoe					TE 2	26 Aug 08							
SOIL DESCRIPTION	PLOT		SAMPLE			DEPTH (m)	ELEV. (m)		n. Resist. Blows/0.3n 50 mm Dia. Cone				Monitoring Well
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE OF ROD			○ Low	ver E	xplosiv	e Limi	it %	onitorii
GROUND SURFACE	20 20		Z	E RE	z °	0-	-128.82	20	4	0 60) 8	0	Σ̈́
FILL: Brown silty sand with clay, concrete and steel		G	1			1-	- 127.82						
	. <u>30</u>	G	2					<u></u>					
								100 Gast	21 Pech	00 300 1314 Rc	0 40	J0 5(00

▲ Full Gas Resp. \triangle Methane Elim.

						8011					
28 Concourse Gate, Unit 1, Ottawa, ON		-				SOIL PROFILE AND TEST DA Phase II-Environmental Site Assessment Former Appletex Mill Appleton, Ontario					
DATUM Ground surface elevations p	orovide	ed by (G. A. S	Smith S					FILE N	o. PE1114	
REMARKS BORINGS BY Backhoe			DATE 26 Aug 08						HOLE NO. TP15		
SOIL DESCRIPTION 법			SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			Well
	STRATA PI	ТҮРЕ	NUMBER	% RECOVERY	WALUE or RQD	(m)	(m)			sive Limit %	Monitoring Well Construction
GROUND SURFACE				RI	z ^o		-128.04	20	40	60 80	2
FILL: Mixture of topsoil, sand, silty clay, gravel and wood 0.51 End of Test Pit		G	1					······································			
TP terminated on bedrock surface @ 0.51m depth											

natersonarc	patersongroup					SOIL PROFILE AND TEST DATA							
28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7				Engineers Phase II-Environmental Sit Former Appletex Mill Appleton, Ontario					sessment				
DATUM Ground surface elevations provided by G. A. Smith Surveying Ltd. FILE NO. PEMARKS PE1114										Ļ			
BORINGS BY Backhoe			D	ATE 2	26 Aug 08	1		HOLE NO.	TP16				
SOIL DESCRIPTION		SAMPLE			DEPTH ELEV.		Pen. Resist. Blows/0.3m 50 mm Dia. Cone			Well ion			
SOIL DESCRIPTION	TA PLOT	ы	R	ERY	ALUE RQD	(m)	(m)	• 5	• 50 mm Dia. Cone				
	STRATA	TYPE	NUMBER	% RECOVERY	Б ч				r Explosive	Limit %	Monitoring Well Construction		
GROUND SURFACE			N RE N			0-	-127.95 :	20	40 60	80	2		
	\bigotimes					0-	127.90						

SOIL DESCRIPTION	E E		~	х	ы	(m)	(m)	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			 So min Dia. Cone bination b
GROUND SURFACE	01		Ч	RE	zo	0-	-127.95	20 40 60 80 ≥
FILL: Sand and gravel with clay, wood and slag		G G	1 2			Ū		 А
0.91 End of Test Pit								
TP terminated on bedrock surface @ 0.91m depth								100 200 300 400 500 Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongroup		Consu	Ilting	SOIL PROFILE AND TEST DATA							
28 Concourse Gate, Unit 1, Ottawa,		-	Consu Engine	eers	Phase II-E Former Ap Appleton,	pletex Mil	ntal Site As I	sessment	t		
DATUM Ground surface elevation	ns provide	ed by	G. A. Sn	nith Su				FILE NO.	PE1114		
REMARKS								HOLE NO.		r	
BORINGS BY Backhoe				DAT	re 26 Aug C	8	TP				
SOIL DESCRIPTION	PLOT		SAMP		DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia.		ig Well uction	
	STRATA	ТҮРЕ	NUMBER	RECOVERY	OF ROD		• Lowe	r Explosiv	e Limit %	Monitoring Well Construction	
GROUND SURFACE			2	N RE)+127.85	20	40 60	80	Σ_	
FILL: Sand, gravel, wood and slag	0.66	G	1							*****	
End of Test Pit											
TP terminated on bedrock surface @ 0.66m depth							100	200 30	0 400 50	00	
							100	200 30 201 314 Ro	0 400 50	1 00	
							Gasteo	n 1314 Ro	dg. (ppm)		

▲ Full Gas Resp. \triangle Methane Elim.

patersongroup		Con	sulting	SOIL PROFILE AND TEST DATA										
28 Concourse Gate, Unit 1, Ottawa, ON		-	Engi	sulting neers	Fo	ase II-Env rmer App pleton, C	letex Mill		Il Site Assessment					
DATUM Ground surface elevations p	rovide	ed by (G. A. S	Smith S		•			FILE NO.	PE1114				
REMARKS									HOLE NO.					
BORINGS BY Backhoe				DA	TE 2	26 Aug 08			TP18					
SOIL DESCRIPTION	РІОТ		SAM			DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. (Monitoring Well Construction			
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD			• Lowe	r Explosive	Limit %	lonitorii Constri			
GROUND SURFACE			4	RE	z	0-	-125.97	20	40 60	80	≥			
FILL: Silty sand with clay, topsoil, wood and slag 0.63 End of Test Pit		G	1											
TP terminated on bedrock														
surface @ 0.63m depth									200 300 200 300 ch 1314 Rd as Resp. △ M		00			

Full Gas Resp.	\triangle Methane Elim.

		Phas
--	--	------

SOIL	PROFIL	E AND	TEST	DATA
------	--------	-------	------	------

Full Gas Resp. \triangle Methane Elim.

Phase II-Environmental Site Assessment Former Appletex Mill Appleton, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

			~ •	0 111			Jintario				
DATUM Ground surface elevations p	rovide	ed by	G. A. 3	Smith	Survey	/ing Ltd.			FILE NO.	PE1114	ı
REMARKS									HOLE NO.	TD10	
BORINGS BY Backhoe		1		D	ATE 2	26 Aug 08				TP19	
SOIL DESCRIPTION	PLOT	SAMPLE DEPTH					ELEV. (m)		esist. Blow) mm Dia. C		ig Well Iction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD			• Lowe	r Explosive	Limit %	Monitoring Well Construction
GROUND SURFACE	01		Z	RE	z ^o	0		20	40 60	80	Σ
						0					
						. 0-	-				
								100 Gastec	200 300 h 1314 Rdg	400 50 j. (ppm)	00

na	atersongroup		SOIL PROFILE AND TEST DATA				
-	ncourse Gate, Unit 1, Ottawa, ON K2E 7T7		Phase II-Environmental Site As Former Appletex Mill Appleton, Ontario	sessment			
DATUM	Ground surface elevations provided by	irveying Ltd.	FILE NO.				

REMARKS	5
	•

BORINGS BY Backhoe

			Ap	pleton, C	Ontario					
(G. A. S	Smith	Survey	ving Ltd.		FILE	NO.	PE1114	ŀ	
		D	ATE 2	26 Aug 08			HOLE	NO.	TP20	
	SAM	IPLE		DEPTH	ELEV.	Pen. R		Blows Dia. Co		Well
	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				_imit % 80	Monitoring Well Construction
	1			0-	-					

SOIL DESCRIPTION		DEPTH ELEV.						Pen. Resist. Blows/0.3m • 50 mm Dia. Cone						tion	
	ATA PLOT	TYPE NUMBER NUMBER © N VALUE or RQD or RQD													Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	L VAJ			0	Low	<i>i</i> er E	Expl	osiv	ve Li	mit %	Con
GROUND SURFACE				R	Z	0-			20	4	40	6	0	80	2
FILL: Brown silty sand with clay, rubber, steel, plastic and fabric0.2	5	G	1					Δ							
End of Test Pit															
TP terminated on bedrock surface @ 0.25m depth															
									: : 100	_: : 2	∔: 200	30	:::)0	: <u> ::</u> 400	·
								G	ast	ech	131	4 R	dg. (j	ppm)	
									Full (Gas F	Resp) . ∆	Metha	ane Elin	۱.

patersongro	Consulting	SOIL PROFILE AND TEST DATA					
28 Concourse Gate, Unit 1, Ottawa, ON		Phase II-En Former App Appleton, (oletex Mill		sessment		
DATUM Ground surface elevations p	urveying Ltd.			FILE NO.	PE1114		
REMARKS BORINGS BY Backhoe	DA	TE 26 Aug 08	3		HOLE NO.	TP21	
SOIL DESCRIPTION	РГОТ	SAMPLE	DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. C	

Monitoring Well Construction STRATA PI N VALUE or RQD RECOVERY NUMBER ТҮРЕ o/0 ○ Lower Explosive Limit % 80 20 40 60 **GROUND SURFACE** 0+128.19 FILL: Brown silty sand with : clay and gravel 0.20 G 1 TOPSOIL G 2 0.63 GLACIAL TILL: Brown silty clay with sand, gravel and cobbles G 3 $\mathbf{\Sigma}$ 1+127.19 ; ÷ ; <u>1.12</u> End of Test Pit TP terminated on bedrock surface @ 1.12m depth 200 300 100 400 500

Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	•	having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	> 85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in-situ fractures.

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and searny, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

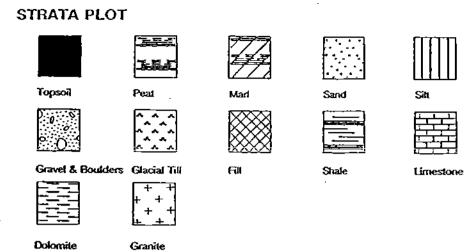
SS	-	Split spoon sample (obtained in conjunction with the performing of the
		Standard Penetration Test (SPT))
τw	-	Thin wall tube or Shelby tube
PS	-	Piston sample
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size AXT, BXL, etc.) Rock core samples are
		obtained with the use of standard diamond drilling bits

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %
LL	-	Liquid limit, % (water content above which soll behaves as a ilquid)
PL	-	Plastic limit, % (water content above which soil behaves plastically)
Ρl	-	Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes
		These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Co an	l Cu an	a used to assess the grading of sands and gravele.

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sand and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

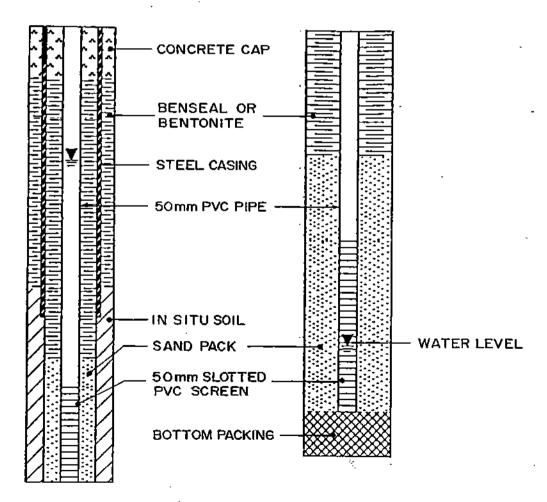

CONSOLIDATION TEST

p'。	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'_)
Cc	-	Compression index (in effect at pressures above p'_{c})
OC Rat	tio	Overconsolidation ratio = p'_{c} / p'_{s}
Void Ra	atio	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)


MONITORING WELL AND PIEZOMETER CONSTRUCTION

Monitoring Well Construction

Piezometer Construction

Clay

Sandstone

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 03-Sep-2008 Order Date:27-Aug-2008

	Client ID: Sample Date: Sample ID:	TP2 G2 26-Aug-08 0835090-01	TP3 G1	TP6 G3 26-Aug-08 0835090-03	TP7 G2 26-Aug-08 0835090-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			•		
% Solids	0.1 % by Wt.	87.2	87.7	89.9	82.2
Metals					
Antimony	1 ug/g dry	-	<1	-	-
Arsenic	1 ug/g dry	-	2	-	-
Barium	10 ug/g dry	-	124	-	-
Beryllium	0.5 ug/g dry	-	0.5	-	-
Boron, available	0.5 ug/g dry	 	0.8	-	-
Cadmium	0.5 ug/g dry	-	<0.5	-	-
Chromium	5 ug/g dry	-	20	-	-
Chromium (VI)	0.4 ug/g dry	-	<0.4	-	-
Cobalt	5 ug/g dry	-	7	-	-
Copper	5 ug/g dry	-	12	-	-
Iron	200 ug/g dry	-	16700	-	-
Lead	1 ug/g dry	-	142	-	-
Mercury	0.1 ug/g dry		<0.1	-	-
Molybdenum	1 ug/g dry		<1	-	-
Nickel	5 ug/g dry	π.	11	-	-
Selenium	1 ug/g dry	-	<1	-	-
Silver	0.3 ug/g dry		<0.3	-	-
Thallium	1 ug/g dry	-	<1	-	+
Vanadium	. 10 ug/g dry	-	29	-	-
Zinc	20 ug/g dry	-	57	-	-
Volatiles	• •		•	• • • • • • • • • • • • • • • • • • •	
Benzene	0.002 ug/g dry	-	-	<0.002	-
Bromodichloromethane	0.002 ug/g dry	-		<0.002	-
Bromoform	0.002 ug/g dry	-	-	<0.002	
Bromomethane	0.003 ug/g dry	-	-	<0.003	-
Carbon Tetrachloride	0.002 ug/g dry	-	-	<0.002	
Chlorobenzene	0.002 ug/g dry	-		<0.002	-
Chloroethane	0.005 ug/g dry	-	-	<0.005	-
Chloroform	0.003 ug/g dry	-	-	<0.003	-
	I				

1-800-769-1947 Paracel®Paracellars, com WMW, PARACELLABS.COM

OTTANA 200-2319 St. Lasters Styl. Ottawe Off Kig Als NISSISSAUGA 6045 Kiunas P.J. Uris #27 Markasauga, CM LEN 633

NIAGARA FALLS Suits Morring Bioly Cit. Ningers Fills, Ch LLJ 045 SARN JA 123 Christina GL N Samer QK: N77 577

Page 3 of 18

· - - - - ----

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6544

L

--- -

Project Description: PE 1114

	Client ID: Sample Date: Sample ID:	TP2 G2 26-Aug-08 0635090-01	TP3 G1 26-Aug-08 0835090-02	TP6 G3 26-Aug-08 0835090-03	TP7 G2 26-Aug-08 0835090-04
Chloromethane	MDL/Units 0.020 ug/g dry	Soil	Soil	Soil	Soil
	0.002 ug/g dry	-		<0.020	-
Dibromochloromethane	0.002 ug/g dry 0.002 ug/g dry	-	-	<0.002	
1,2-Dibromoethane			-	<0.002	-
1,2-Dichlorobenzene	0.002 ug/g dry		-	<0.002	-
1,3-Dichlorobenzene	0.002 ug/g dry	-	-	<0.002	
1,4-Dichlorobenzene	0.002 ug/g dry	-	-	<0.002	-
1,1-Dichloroethane	0.002 ug/g dry	-		<0.002	-
1,2-Dichloroethane	0.002 ug/g dry	-	-	<0.002	-
1,1-Dichloroethylene	0.002 ug/g dry	-	-	<0.002	-
cis-1,2-Dichloroethylene	0.002 ug/g dry	-	-	<0.002	-
trans-1,2-Dichloroethylene	0.003 ug/g dry	-	-	<0.003	-
1,2-Dichloropropane	0.002 ug/g dry	-	-	<0.002	-
cis-1,3-Dichloropropylene	0.002 ug/g dry	-	-	<0.002	-
trans-1,3-Dichloropropylene	0.002 ug/g dry	-	-	<0.002	-
Elhylbenzene	0.002 ug/g dry	-	-	<0.002	-
Methylene Chloride	0.010 ug/g dry	-	-	<0.010	-
Styrene	0.002 ug/g dry	-	-	<0.002	-
1,1,1,2-Tetrachloroethane	0.003 ug/g dry		-	<0.003	-
1,1,2,2-Tetrachloroethane	0.003 ug/g dry	-	-	<0.003	-
Tetrachloroethylene	0.002 ug/g dry	-	-	<0.002	-
Toluene	0.002 ug/g dry	-	-	<0.002	-
1,1,1-Trichloroethane	0.002 ug/g dry	-	-	<0.002	-
1,1,2-Trichloroethane	0.002 ug/g dry	~	_	<0.002	-
Trichloroethylene	0.003 ug/g dry	-	-	<0.003	-
Trichlorofluoromethane	0.005 ug/g dry		_	<0.005	-
1,3,5-Trimelhylbenzene	0.003 ug/g dry	-		<0.003	-
Vinyl chloride	0.002 ug/g dry	-	-	<0.002	-
m,p-Xylenes	0.002 ug/g dry	-	_	<0.002	
o-Xylene	0.002 ug/g dry			<0.002	-
4-Bromofluorobenzene	Surrogate	_	_	117%	-
Dibromofluoromethane	Surrogale		-	82.0%	-
	· ····•	-		02.070	L

∛ · **1 · 800 · 749 · 1947** ξ − Paracel@Paracellabs.com

WWW, FARACELLADS.COM

01,7,8,4,8 100-2219 St. Leadows Blv2. Orawa, GN 616 2,3 N1 55 1 55 8 UGA 554E Kemat Rd. Unit 837 Mississinga, CN 1,510 5,3 NI KGARA FALLE SAI 5 Memory Biery Co. Nagora Fria. On L31 045 SARN JA 123 Chronya St. N. Sarna, OK N27 077

Page 4 of 18

Order#:0835090

Report Date: 03-Sep-2008 Order Date:27-Aug-2008

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order#: 0835090

Report Date: 03-Sep-2008 Order Date:27-Aug-2008

Client PO: 6544		Project Descriptio	n: PE 1114		
	Client ID: Sample Date: Sample ID: MDL/Units	ТР2 G2 26-Aug-08 0835090-01 Soil	TP3 G1 26-Aug-08 0835090-02 Soil	TP6 G3 26-Aug-08 0835090-03 Soil	TP7 G2 26-Aug-08 0835090-04 Soil
Toluene-d8	Surrogate		·	101%	-
Benzene	0.002 ug/g dry	<0.002	-	-	-
Ethylbenzene	0.002 ug/g dry	<0.002	-		-
Toluene	0.002 ug/g dry	<0.002	-	_	-
m,p-Xylenes	0.002 ug/g dry	<0.002	-	-	
o-Xylene	0.002 ug/g dry	<0.002	-	-	-
Toluene-d0	Surrogate	99.6%	-	-	-
Hydrocarbons			ł		•
F1 PHCs (C6-C10)	10 ug/g dry	<10	<10	<10	<10
F2 PHCs (C10-C16)	10 ug/g dry	<10	<10	<10	<10
F3 PHCs (C16-C34)	10 ug/g dry	19	45	<10	<10
F4 PHCs (C34-C50)	10 ug/g dry	10	23	<10	<10

% 1×800×749×1947 € PARACEL⊕PARACELLABS.COM WWW.PARACELLABS.COM

RI 553 554064 6645 Komar Foi Unit 827 2655 1586 (N. UN LON GJ3

0 T T ANA 560-2319 St. Lauren Bivd Oceans, CN 816 4-8

NIAGARA FALLE 5415 Merring Blory 24 Megara Falls, ON LLI 085

Sarn I a 123 Chearto St. N. 50054, OK MIT 927

Page 5 of 18

PARACEL ABCE- UNISS LTD.

Certificate of Analysis

Client: Paterson Group Consulting Engineers

--- ---

	Client ID:	TP7 G4	TP8 G1	TP9 G1	TP11 G1
	Sample Date:	26-Aug-08	26-Aug-08	26-Aug-08	26-Aug-08
	Sample ID:	0835090-05	0835090-06	0835090-07	0835090-08
	MDL/Units	Soil	Soil	Soil	Soil
hysical Characteristics			·	·	T
% Solids	0.1 % by Wt.	91.5	91.6	85.6	87.1
etals				·	-
nimony	1 ug/g dry	-	<1	<1	<1
Arsenic	1 ug/g dry		<1	1	4
Barium	10 ug/g dry		31	112	94
Beryllium	0.5 ug/g dry	-	<0.5	0.5	<0.5
Boron, available	0.5 ug/g dry	-	<0.5	<0.5	<0.5
Cadmium	0.5 ug/g dry	-	<0.5	<0.5	1.5
Chromium	5 ug/g dry	-	11	19	30
Chromium (VI)	0.4 ug/g dry	-	<0.4	<0.4	<0.4
Cobatt	5 ug/g dry	-	<5	6	7
Copper	5 ug/g dry	-	6	13	42
ron	200 ug/g dry	-	11500	16200	29100
.ead	1 ug/g dry	-	5	11	308
Mercury	0.1 ug/g dry	-	<0.1	<0.1	<0.1
Molybdenum	1 ug/g dry	<u>-</u>	<1	<1	1
Nickel	5 ug/g dry	-	6	12	48
Selenium	1 ug/g dry	-	<1	<1	<1
Silver	0.3 ug/g dry	-	<0.3	<0.3	<0.3
Fhallium	1 ug/g diy	-	<1	<1	<1
/anadium	10 ug/g dry	-	22	30	121
Zinc	20 ug/g dry	-	<20	26	532
olatiles	ł ł		!		Į
Benzene	0.002 ug/g dry	<0.002	-	-	-
Bromodichloromethane	0.002 ug/g dry	<0.002	-	-	-
Bromoform	0.002 ug/g dry	<0.002	-	-	-
Bromomethane	0.003 ug/g dry	<0.003	-	-	-
Carbon Tetrachloride	0.002 ug/g dry	<0.002	-	-	-
Chlorobenzene	0.002 ug/g dry	<0.002	-	-	-
Chloroethane	0.005 ug/g dry	<0.005	-	-	-
Chloroform	0.003 ug/g dry	<0.003	-		_
Chloromethane	0.020 ug/g dry	<0.020			-

1-800-709-1947 Paracel@pagacellabs.com

WWW.PARACELLADS.COM

ş

OTTANA 300-2215 St. Laurer Blvg. Orawa, DN LIG 4.8 N 1 5 5 3 5 5 A U G A 6645 Kontat P.J. UPI, 127 May 120000, CM LTN 623

REAGARA FALLS 5415 Menorg Ridly Co Histore Patie, CH LSJ 043

SARNIA 123 Chrysens St. H Sartes, OK H7T (17

Page 6 of 18

Order #: 0835090

Report Date: 03-Sep-2008 Order Date:27-Aug-2008

PARACEL . 38188 15

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6544

Project Description: PE 1114 TERCI ---- T TDZ CA

	Client ID:	TP7 G4	TP8 G1	TP9 G1	TP11 G1
	Sample Date:	26-Aug-08	26-Aug-08	26-Aug-08	26-Aug-08
	Sample ID:	0835090-05	0835090-06	0835090-07	0835090-08
·	MDL/Units	Soil	Soil	Soil	Soil
Dibromochloromelhane	0.002 ug/g dry	<0.002	-		-
1,2-Dibromoethane	0.002 ug/g dry	<0.002	-	-	-
1,2-Dichlorobenzene	0.002 ug/g dry	<0.002	-	-	-
1,3-Dichlorobenzene	0.002 ug/g dry	<0.002	-	-	-
1,4-Dichlorobenzene	0.002 ug/g dry	<0.002	-	-	-
1,1-Dichloroethane	0.002 ug/g dry	<0.002	-	-	-
1,2-Dichloroethane	0.002 ug/g dry	<0.002	-	-	-
1,1-Dichloroethylene	0.002 ug/g dry	<0.002		-	
cis-1,2-Dichloroethylene	0.002 ug/g dry	<0.002	-	-	-
trans-1,2-Dichloroethylene	0.003 ug/g dry	<0.003	-	-	-
1,2-Dichloropropane	0.002 ug/g dry	<0.002	-	-	-
cis-1,3-Dichloropropylene	0.002 ug/g dry	<0.002	-	-	-
trans-1,3-Dichloropropylene	0.002 ug/g dry	<0.002	-	-	-
Ethylbenzene	0.002 ug/g dry	<0.002	-	-	-
Methylene Chloride	0.010 ug/g dry	<0.010	-	-	-
Styrene	0.002 ug/g dry	<0.002	-	-	-
1,1,1,2-Tetrachloroethane	0.003 ug/g dry	<0.003	-	-	-
1,1,2,2-Telrachloroethane	0.003 ug/g dry	<0.003	-	-	-
Tetrachloroethylene	0.002 ug/g dry	<0.002	-	-	-
Toluene	0.002 ug/g dry	<0.002	-	-	-
1,1,1-Trichloroethane	0.002 ug/g dry	<0.002	-	-	
1,1,2-Trichloroethane	0.002 ug/g dry	<0.002	-	-	-
Trichloroethylene	0.003 ug/g dry	<0.003	-	-	-
Trichlorofluoromethane	0.005 ug/g dry	<0.005	-	-	-
1,3,5-Trimethylbenzene	0.003 ug/g dry	<0.003	-	-	-
Vinyl chloride	0.002 ug/g dry	<0.002	-		-
m,p-Xylenes	0.002 ug/g dry	<0.002	-	-	-
o-Xylene	0.002 ug/g dry	<0.002	-	-	-
4-Bromofluorobenzene	Surrogate	119%	-	-	-
Dibromofluoromethane	Surrogate	83.7%	-	-	-
Toluene-d8	Surrogate	101%	-	-	-
Hydrocarbons	- ;;		•	• • • •	

→ 1.200.709.1947
> PARACELØPARACELLABS.COM

WWW.PARACELLABS.COM

OTTANA SCO-2319 St. Laurent Bivel. Ocean, ON K'G 2.5 N155155AUGA Bode Konner fol Unit 927 Merrisonen, EN 18N 683

N LAGARA, FALLS Sats Murring Gauss Sta Niggers Falls, ON LGJ 048 SARNIA 173 Chastra Si N. Sama, OK N7T STJ

Page 7 of 18

Report Date: 03-Sep-2008 Order Date:27-Aug-2008

Order #: 0835090

GPARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6544

Project Description: PE 1114

	Client ID: Sample Date: Sample ID: MDL/Units	TP7 G4 26-Aug-08 0835090-05 Soil	TP8 G1 26-Aug-08 0835090-06 Soil	TP9 G1 26-Aug-08 0835090-07 Soil	TP11 G1 26-Aug-08 0835090-08 Soil
F1 PHCs (C6-C10)	10 ug/g dry	-	-	-	-
F2 PHCs (C10-C16)	10 ug/g dry	-	-	-	-
F3 PHCs (C16-C34)	10 ug/g dry	-	-	-	-
F4 PHCs (C34-C50)	10 ug/g dry	-	-	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	<0.02	-	<0.02
Acenaphthylene	0.02 ug/g dry	-	<0.02	-	0.03
Anthracene	0.02 ug/g dry	-	<0.02	-	0.03
Benzo[a]anthracene	0.02 ug/g dry	-	<0.02	-	0.13
Benzo[a]pyrene	0.02 ug/g dry	-	<0.02	-	0.15
Benzo[b]fluoranthene	0.02 ug/g dry	-	<0.02	-	0.22
Benzo[g,h,i]perylene	0.02 ug/g dry	-	<0.02	-	0.11
Benzo[k]fluoranthene	0.02 ug/g dry	-	<0.02	-	0.10
Biphenyl	0.02 ug/g dry	-	<0.02	-	0.06
Chrysene	0.02 ug/g diy	-	<0.02	-	0.18
Dibenzo[a,h]anthracene	0.02 ug/g dry	-	<0.02	-	0.03
Fluoranthene	0.02 ug/g dry	-	<0.02	-	0.20
Fluorene	0.02 ug/g dry	-	<0.02	-	0.02
Indeno[1,2,3-cd]pyrene	0.02 ug/g dry	-	<0.02	-	0.10
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	0.56
2-Methylnaphthalene	0.02 ug/g dry		<0.02	-	0.68
Naphthalene	0.02 ug/g dry	· · ·	<0.02	-	0.40
Phenanthrene	0.02 ug/g dry	-	<0.02	-	0.37
Pyrene	0.02 ug/g dry	-	<0.02	-	0.16
2-Fluorobiphenyl	Surrogate	-	96.9%	-	108%
Terphenyl-d14	Surrogate	-	129%	-	125%

1+800+749+1947 Paracel@paracellars.com

ę

WWW.PARACELLABS.COM

017 ANA 300-23 19 St. Lindson 81-21. Drawn, DN KIG AIS H 1 S 5 1 \$ 5 A UGA 648 Krimst Rd. Unit #27 Metrosouth, DV LCN 633 NIAGARA, FALLS, Sits Monory Bioly CI Risgore Fails, CH LLI 043 SARN 1A

123 CALSDRA GL N Same, OK N7T 577 Page 8 of 18

Order #: 0835090

Report Date: 03-Sep-2008 Order Date:27-Aug-2008 PARACEL ABORATORIES

Certificate of Analysis

Client: Paterson Group Consulting Engineers

C.	1	225000 ····
		0000000

....

Report Date: 03-Sep-2008 Order Date:27-Aug-2008

Client PO: 6544 Project Description: PE 1114						
	Client iD: Sample Date: Sample ID: MDL/Units	TP13 G1 26-Aug-08 0835090-09 Soil	TP16 G1 26-Aug-08 0835090-10 Soil	TP18 G1 26-Aug-08 0835090-11 Soil	TP20 G1 26-Aug-08 0835090-12 Soil	
Physical Characteristics		· · · · · · · · · · · · · · · · · · ·			· · · · ·	
% Solids	0.1 % by Wt.	82.1	91.5	78.8	82.7	
Metals	······	-				
Anlimony	1 ug/g dry	<1	<1	<1	4	
Arsenic	1 ug/g dry	8	8	6	5	
Barium	10 ug/g dry	322	241	549	468	
Beryllium	0.5 ug/g dry	0.8	0.5	0.5	0.5	
Boron, available	0.5 ug/g dry	0.7	1.1	0.8	1.2	
Cadmium	0.5 ug/g dry	0.5	<0.5	<0.5	1.7	
Chromium	5 ug/g dry	25	27	23	186	
Chromium (VI)	0.4 ug/g dry	<0.4	<0.4	<0.4	<0.4	
Coball	5 ug/g dry	10	8	5	7	
Copper	5 ug/g dry	38	54	14	125	
Iron	200 ug/g dry	26600	21700	16100	27400	
Lead	1 ug/g dry	43	84	28	294	
Mercury	0.1 ug/g day	<0.1	0.5	0.9	0.4	
Molybdenum	1 ug/g dry	<1	1	1	<1	
Nickel	5 ug/g dry	28	51	13	25	
Selenium	1 ug/g dry	<1	<1	<1	<1	
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3	
Thallium	1 ug/g dry	<1	<1	<1	<1	
Vanadium	10 ug/g dry	101	240	45	28	
Zinc	20 ug/g dry	102	185		413	
/olatiles	·····		ـــــــــــــــــــــــــــــــــــــ		 _	
Benzene	0.002 ug/g dry	-	-	-	<0.002	
Bromodichloromethane	0.002 ug/g dry	-	-		<0.002	
Bromoform	0.002 ug/g dry	-	-	-	<0.002	
Bromomethane	0.003 ug/g dry	-	-		<0.003	
Carbon Tetrachloride	0.092 ug/g dry	-	-	-	<0.002	
Chlorobenzene	0.002 ug/g dry	-	-	-	<0.002	
Chloroelhane	0.005 ug/g dry	-	-	-	<0.005	
Chloroform	0.003 ug/g dry	-		-	<0.003	
Chloromelhane	0.020 ug/g dry	-			<0.020	

2 - 1-200-749-1947 • Paracel@Paracellabs.com WWW.PARACELLABS.COM

OTTANA 140-2319 St. Lehnens Styll. Ouzard, On Kig 4.8 NI 551 554 UGA 5545 Kumat Pol Unit #27 Morassona, ON LENI 623

NEAGARA FALLS 5415 Memory Giory Cri Nispers Falls, ON LSJ CAS

547034 123 Chrono G. N. Sara, OK 171 577

Page 9 of 18

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6544

Hydrocarbons

__

Project Description: PE 1114

-- - --

	Client ID:	TP13G1	TP16 G1	TP18 G1	TP20 G1
	Sample Date:	26-Aug-08 0835090-09	26-Aug-08	26-Aug-08	26-Aug-08
	Sample ID:	Soil	0835090-10 Soil	0835090-11 Soil	0835090-12
Dibromochloromethane	MDL/Units 0.002 ug/g dry				Soil
1.2-Dibromoethane	0.002 ug/g dry	-	· · ·	·	<0.002
	-	<u> </u>			<0.002
1,2-Dichlorobenzene	0.002 ug/g dry	-	-	-	<0.002
1,3-Dichlorobenzene	0.002 ug/g dry	-	-	-	<0.002
1,4-Dichlorobenzene	0.002 ug/g dry	-	-	-	<0.002
1,1-Dichloroethane	0.002 ug/g dry	-	-	-	<0.002
1,2-Dichloroelhane	0.002 ug/g dry	-	-	-	<0.002
1,1-Dichloroelhylene	0.002 ug/g dry	-	-	-	<0.002
cis-1,2-Dichloroethylene	0.002 ug/g dry	-	-	-	<0.002
trans-1,2-Dichloroethylene	0.003 ug/g dry	-	-	-	<0.003
1,2-Dichloropropane	0.002 ug/g dry		-	-	<0.002
cis-1,3-Dichloropropylene	0.002 ug/g dry	-	-		<0.002
trans-1,3-Dichloropropylene	0.002 ug/g dry	-	-	-	<0.002
Ethylbenzene	0.002 ug/g dry	-	-	-	<0.002
Methylene Chioride	0.010 ug/g dry	-	-	-	<0.010
Styrene	0.002 ug/g dry	-	-	-	<0.002
1,1,1,2-Tetrachioroethane	0.003 ug/g dry	-	-	-	<0.003
1,1,2,2-Tetrachloroethane	0,003 ug/g dry		-	-	<0.003
Tetrachloroethylene	0.002 ug/g dry	-	-	-	<0.002
Toluene	0.002 ug/g dry	-		-	<0.002
1,1,1-Trichloroethane	0.002 ug/g dry	-	-	-	<0.002
1,1,2-Trichloroethane	0.002 ug/g dry	-	-	-	<0.002
Trichloroethylene	0.003 ug/g dry	-	-	-	<0.003
Trichlorofluoromethane	0.005 ug/g dry	-	-	-	<0.005
1,3,5-Trimethylbenzene	0.003 ug/g dry	-	-	-	<0.003
Vinyl chloride	0.002 ug/g dry	-	-		<0.002
m,p-Xylenes	0.002 ug/g dry	-	-	-	<0.002
o-Xylene	0.002 ug/g dry	-	-	-	<0.002
4-Bromofluorobenzene	Surrogate	-	-	-	122%
Dibromofluoromethane	Surrogate	-	-	-	86.6%
Toluene-d8	Surrogate	-	-	-	101%
		· · · · · · ·			

WWW.PARACELLABS.COM

UTIANA SQU-2319 St. Lauren Birt Dawn, UN KIG 238 NI 553 55AUGA STAR Komar Rai Unit 827 Misenstrouga, ON LIN 673 N LAGARA, FALLS 5415 Milling Okus C4 Negara Falls, ON L21 OAS SARN LA 123 Christina St. N. 5arna, OK Art 207

Page 10 of 18

Order #: 0835090

Report Date: 03-Sep-2008 Order Date:27-Aug-2008 PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6544

- - - ----

L

Project Description: PE 1114

	Client ID: Sample Date: Sample ID:	TP13 G1 26-Aug-08 0835090-09	TP16 G1 26-Aug-08 0835090-10	TP18 G1 26-Aug-08 0835090-11	TP20 G1 26-Aug-08 0835090-12
<u> </u>	MDL/Units	Soil	Soil	Soil	Soil
F1 PHCs (C6-C10)	10 ug/g dry	<10	-	-	<10
F2 PHCs (C10-C16)	10 ug/g dry	16	-	-	<10
F3 PHCs (C16-C34)	10 ug/g dry	265	-		639
F4 PHCs (C34-C50)	10 ug/g dry	221	-	-	158

-- -

1-800-749-1947 Paracel@Paracellabs.com

ş

WHW.PARACELLABS.COM

OTIANA 500-23 12 SL Learner Stril Orone CN KIG A:3 N155145A UGA 546 Krimak R3, Ur. # 87 Massisoura, CN LSN 513 HEAGARA, FALLS S415 Microsong Query C4. Microsof Fals, O4 L2J 045

Sarn Ia 123 Cansdis St. N. 53009, UN VII 517

Page 11 of 18

Order #: 0835090

Report Date: 03-Sep-2008 Order Date:27-Aug-2008 PARACEL 701300000

Certificate of Analysis

Client: Paterson Group Consulting Engineers

.

Order #: 0836113

Report Date: 10-Sep-2008 Order Date:5-Sep-2008

Client PO: 6917 Project Description: PE 1114					
г	Client ID: Sample Date: Sample ID: MDL/Units	MW1-08 05-Sep-08 0836113-01 Water	MW2-08 05-Sep-08 0836113-02 Waler	MW3-08 05-Sep-08 0836113-03 Waler	MW1 05-Sep-08 0836113-04 Water
Metals					
Antimony	1 ug/L	-	-	<1	-
Arsenic	10 ug/L	-	-	<10	
Barium	10 ug/L	-	-	233	_
Beryllium	1 ug/L	<u>.</u>	-	<1	-
Boron	50 ug/L		-		-
Cadmium	1 ug/L	-	-	<1	
Chromium	50 ug/L		-	<50	-
Chromium (VI)	10 ug/L	-	-	<10	 _
Cobalt	5 ug/L	-	-	<5	-
Copper	5 ug/L	-	-	5	
Iron	200 ug/L	-	-	481	-
Lead	1 ug/L		-	3	-
Mercury	0.1 ug/L	-	-	<0.1	-
Molybdenum	5 ug/L	-	-	28	-
Nickel	5 ug/L	-	-	11	-
Selenium	5 ug/L	-	-	<5	
Silver	1 ug/L	-	-	<1	-
Sodium	200 ug/L	-		163000	-
Thallium	1 ug/L	-		<1	-
Vanadium	10 ug/L	-	-	10	-
Zinc	20 ug/L	-		<20	-
Volatiles					
Benzene	0.5 ug/L	-	<0.5	<0.5	<0.5
Bromodichloromethane	0.4 ug/L	-	<0.4	<0.4	<0.4
Bromoform	0.5 ug/L	-	<0.5	<0.5	<0.5
Bromomethane	0.7 ug/L	-	<0.7	<0.7	<0.7
Carbon Tetrachloride	0,5 ug/L	-	<0.5	<0.5	<0.5
Chlorobenzene	0.4 ug/L	<u> </u>	<0.4	<0,4	<0.4
Chloroethane	1.0 ug/L	-	<1.0	<1.0	<1.0
Chloroform	0.5 ug/L	-	<0.5	<0.5	<0.5
Chloromelhane	3.0 ug/L	_	<3.0	<3.0	<3.0

○ 1-800+749+1947 РАНАСЕЦФРАНАСЕЦЦАВЪ.СОМ

WHW, PARACELLABS.COM

OTTANA SEO 2319 St. Laureni Bird. Ortani, ON EDG AJB RISSISSAUGA 9645 Kamal Ro, Unit #27 Marysough, CA Lon 0-0

NIAGARA FALLS NATS MERING GLUY CH Negera Fals, ON LSJ 643 SARNIA 123 Chesters St. N Sarow, ON NZT 227

Page 3 of 15

∂PARACEL ABORATORIES -

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6917

Project Description: PE 1114

	Client ID:	MW1-08	MIV/2-08	MW3-08	MVV1
	Sample Date:	05-Sep-08	05-Sep-08	05-Sep-08	05-Sep-08
	Sample ID:	0836113-01 Water	0836113-02 Water	0836113-03 Water	0836113-04 Water
Dibromochloromethane	MDL/Units 0.5 ug/L	-	<0.5	<0.5	
1.2-Dibromoethane	1.0 ug/L			<1.0	<0.5
	0.4 ug/L	-	<1.0		<1.0
1,2-Dichlorobenzene	0,4 µg/L		<0.4	<0.4	<0.4
1,3-Dichlorobenzene	0.4 ug/L		<0.4	<0.4	<0.4
1,4-Dichlorobenzene	0.5 ug/L	-	<0.4	<0.4	<0.4
1,1-Dichloroethane			<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L		<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	-	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.4 ug/L	-	<0.4	<0.4	<0.4
trans-1,2-Dichloroethylene	1.0 ug/L		<1.0	<1.0	<1.0
1,2-Dichloropropane	0.5 ug/L	-	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.4 ug/L	-	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	0.5 ug/L	-	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	-	<0.5	0.9	<0.5
Methylene Chloride	4,0 ug/L	-	<4.0	<4.0	<4.0
Styrene	0.4 ug/L	-	<0.4	<0.4	<0.4
1,1,1,2-Tetrachioroelhane	0.5 ug/L	-	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.6 ug/L	-	<0.6	<0.6	<0.6
Tetrachloroethylene	0.5 ug/L	-	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	-	<0.5	1.7	<0.5
1,1,1-Trichloroethane	0.4 ug/L	-	<0.4	<0.4	<0.4
1,1,2-Trichloroethane	0.6 ug/L	-	<0.6	<0.6	<0.6
Trichloroethylene	0.4 ug/L	-	<0.4	<0.4	<0.4
Trichlorofluoromethane	1.0 ug/L	-	<1.0	<1.0	<1.0
1,3,5-Trimelhylbenzene	0,5 ug/L	-	<0.5	<0.5	<0.5
Vinyl chloride	0.4 ug/t,	-	<0.4	<0.4	<0.4
m,p-Xytenes	0.5 ug/L		<0.5	1.1	<0.5
o-Xylene	0.5 ug/L	-	<0.5	0.5	<0.5
4-Bromofluorobenzene	Surrogate	-	98.0%	94.6%	96.1%
Dibromofluoromethane	Surrogate	-	101%	107%	101%
Toluene-d8	Surrogate	-	106%	92.4%	104%

÷

WHW, PARACELLABS.COM

оттама 900 2019 St. Linewey Sive. Отехн. Он К'сале MISSISSAUGA 6646 Krimat Rd. Unit #27 Missignada, DN LSN 623

NIAGARA FALLS 5419 Morring Birly Cit Niegwa Pars, ON L3J 043 568838 123 Chouses St. N. Same, ON N77 577

Page 4 of 15

Order#:0836113

Client: Paterson Group Consulting Engineers

Client PO: 6917

Į

Project Description: PE 1114

	Client ID Sample Date Sample ID: MDL/Units	MW1-08 05-Sep-08 0836113-01 Water	MW2-08 05-Sep-08 0836113-02 Water	MW3-08 05-Sep-08 0836113-03 Water	MW1 05-Sep-08 0836113-04 Water
Benzene	0.5 ug/L	<0.5	-	-	-
Elhylbenzene	0.5 ug/L	0.6	-	-	-
Toluene	0.5 ug/L	1.0	-	-	-
m,p-Xylenes	0.5 ug/L	3.2	-	-	-
o-Xylene	0.5 ug/L	8.3	-	-	-
Toluene-d8	Surrogate	103%	-	-	-
Hydrocarbons			ļ		<u> </u>
F1 PHCs (C6-C10)	200 ug/L	200	<200	-	<200
F2 PHCs (C10-C16)	100 ug/L	4350000 [3]	<100	-	<100
F3 PHCs (C16-C34)	100 ug/L	3460000 [3]	<100	-	<100
F4 PHCs (C34-C50)	100 ug/L	<20000 [2] [3]	<100	-	<100
Semi-Volatiles					•
Acenaphthene	0.05 ug/L	1350 [3] [4]	-	-	-
Acenaphthylene	0.05 ug/L	300 [3] [4]	-	-	-
Anthracene	0.01 ug/L.	185 [3] [4]	-	-	-
Benzo[a]anthracene	0.01 ug/L	<5.00 [1] [3] [4]	-	-	-
Benzo[a]pyrene	0.01 ug/L	<5.00 [1] [3] [4]	-	-	-
Benzo[b]fluoranthene	0.05 ug/L	<25.0 [1] [3] [4]	-	-	-
Benzo[g,h,i]perylene	0.05 ug/L	<25.0 [1] [3] [4]	-	-	-
Benzo[k]fluoranthene	0.05 ug/L	<25.0 [1] [3] [4]	-	-	-
Biphenyl	0,05 ug/L	2430 [3] [4]	-	-	-
Chrysene	0.05 ug/L	<25.0 [1] [3] [4]	-	-	-
Dibenzo[a,h]anthracene	0.05 ug/L	<25.0 [1] [3] [4]	-	-	-
Fluoranthene	0.01 ug/L	<5.00 [1] [3] [4]	-	-	-
Fluorene	0,05 ug/L,	2150 [3] [4]	-	-	-
Indeno[1,2,3-cd]pyrene	0.05 ug/L	<25.0 [1] [3] [4]	-	-	-
1-Melhyinaphihalene	0.05 ug/L	16700 [3] [4]	-	-	-
2-Methylnaphthalene	0.05 ug/L	30200 [3] [4]	-	-	-
Naphthalene	0.05 ug/L	7420 [3] [4]	-	-	-
Phenanthrene	0.05 ug/L,	4020 [3] [4]	-	-	-
Pyrene	0.01 ug/L	252 [3] [4]	-	-	-

WWW.PARACELLABS.COM

017 ARA 200-2319 St. Lasters Bird. Drawa, DN KIG 428 B145 KARGA B3, UPA 427 JASS 135 AUGA 5646 KARGA DN LSN 6-27 JASS 155000 DN LSN 6-27 HIAGARA FALLS S419 Manning Broy Ca. Ningara Palls, ON LUJ 045 S ARN 1 A 123 Chesona Sa. N. Sairwa, OK N27 577 Order #- 0836143

Report Date: 10-Sep-2008 Order Date:5-Sep-2008

Page 5 of 15

GPARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6917

Project Description: PE 1114

	Cl i ent ID: Sample Date: Sample ID:	MW2 05-Sep-08 0836113-05	-	- -	-
Metals	MDL/Units	Water	-	-	-
<u> </u>	4=0		1		·
Antimony	1 ug/L	<1	-	-	-
Arsenic	10 ug/L	<10		-	-
Barium	10 ug/L		-		-
Beryllium	1 ug/L	<1	-	-	
Boron	50 ug/L	125	-	-	-
Cadmium	1 ug/L	<1	-	-	_
Chromium	50 ug/L	<50	-	-	-
Chromium (VI)	10 ug/L	<10	-	-	-
Cobalt	5 ug/L	<5	-	-	-
Copper	5 ug/Ľ	<5	-	-	-
Iron	200 ug/L	265	-	-	-
Lead	1 ug/L		-	-	-
Mercury	0.1 ug/L	<0.1	-	-	-
Molybdenum	5 ug/L	<5	-	-	-
Nickel	5 ug/L	10	-	-	-
Selenium	5 ug/L	<5	-	-	-
Silver	1 ug/L,	<1	-	-	-
Sodium	200 ug/L	47200	-	-	-
Thallium	1 ug/L	<1	-	-	-
Vanadium	10 ug/L	<10	-	-	-
Zinc	20 ug/L	<20	-	-	-
Volatiles	·		·		
Benzene	0.5 ug/L	<0.5	-	-	· _
Bromodichloromethane	0,4 ug/L	<0.4	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0,7 ug/L	<0.7	-	-	-
Carbon Tetrachloride	0.5 ug/L	<0.5	-	-	-
Chlorobenzene	0.4 ug/L	<0.4	-	-	-
Chloroethane	1,0 ug/L	<1.0	-	_	-
Chloroform	0.5 ug/L	<0.5	-		-
Chloromethane	3.0 ug/L	<3.0		-	-

»: 1+800-749+1947 »- раласеюфранасецања.сон

WNW.PARACELLABS.COM

OTTANA 200 23:19 St. Lauren Bivi. Otave. On Krg 238 MISSI 3 SAUGA 6546 Komat Ad Unt #27 Mystrogia. On LBN 0.13 NEAGARA FALLS 5413 Manuag Blory C-1 Nisgara Pala, ON Lài BAS

SARTIA 123 Christers Gill N. Sama, OK 971 577

Page 6 of 15

Orden# 0836113

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 6917

ļ

Project Description: PE 1114

.

--- ----

	Client ID:	MW2	-	-	-
	Sample Date:	05-Sep-08 0836113-05	-		-
	Sample ID: MDL/Units	Water		-	-
Dibromochloromethane	0.5 ug/L	<0.5		-	
1,2-Dibromoethane	1.0 ug/L	<1.0	_	-	
1,2-Dichlorobenzene	0.4 ug/L	<0.4	-		-
1,3-Dichlorobenzene	0.4 ug/L	<0.4	-		-
1,4-Dichlorobenzene	0.4 ug/L	<0.4	-	-	
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	
1,2-Dichloroethane	0.5 vg/L	<0.5	-	-	
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0,4 ug/L	<0.4	-	-	-
trans-1,2-Dichloroethylene	1.0 ug/L	<1.0	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.4 ug/L	<0.4	-		-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Methylene Chloride	4.0 ug/L	<4.0	-	-	-
Styrene	0.4 ug/L	<0.4	-	-	-
1,1,1,2-Telrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.6 ug/L	<0.6	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	
Toluene	0.5 ug/L	<0.5		-	-
1,1,1-Trichloroethane	0.4 ug/L	<0.4	-	-	-
1,1,2-Trichloroethane	0.6 ug/L	<0.6	-	-	-
Trichloroethylene	0.4 ug/L	<0.4	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	_
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-		-
Vinyl chloride	0.4 ug/L	<0.4	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	96.2%			-
Dibromofluoromethane	Surrogate	102%	-	-	-
Toluene-d8	Surrogate	95.3%	-	-	-
Hydrocarbons	•		•	•	

1-800-749-3947 Paracel@Paracellab5.com

WWW.PARACELLABS.COM

0778NA 960-2019 SL Lauren Bird. Ordan, Orekto 4,3 N 35155AUGA 6645 Keimat P3 Urit 627 Assessingt, ON 120 643 NIAGARA FALLS 5-119 Manning Bany Cal Niggara Patu, ON L-13 OAS SAMN JA 123 Chinana Se, N Samue, OK N77 547

Page 7 of 15

Order#: 0836113

Client: Paterson Group Consulting Engineers

Client PO: 6917

L

Project Description: PE 1114

	Client ID:	MW2	-	-	
	Sample Date:	05-Sep-08	-	-	-
	Sample ID:	0836113-05	-	-	-
	MDL/Units	Water	-	-	-
F1 PHCs (C6-C10)	200 ug/L	<200	-	-	_
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

- 1.800×749×1947 Paracel@Paracellass.com

WWW, FARACELLABS.COM

077 ANA 900-2219 St. Luarden Bred. Ordere Chi Kits A.S NI 551 558 UGA 9345 Keimat Pd. Unic #27 Mitsidsonga. Dri 1,514 6/3 NI AGARA FALLE, Bits Moving Bloss Col Nieger Falls, ON L13 043 SARN 14 120 Chestra St. N. Sarra, OR NYT 317

Page 8 of 15

Order #: 0836113

į

Certificate of Analysis

Client: Paterson Group Consulting Engineers

	Order #: 0835132	

Report Date: 05-Sep-2008 Order Date:28-Aug-2008

	Client ID:	Lagoon 1	Lagoon 2	Lagoon 3	MW3 SS6
	Sample Date:	28-Aug-08 0835132-01	28-Aug-08 0835132-02	28-Aug-08 0835132-03	28-Aug-08 0835132-04
	Sample ID: MDL/Units	Soil	0835192-02 Soil	Soil	0635132-04 Soil
hysical Characteristics					
% Solids	0.1 % by WL	59.7	75.8	28.4	80.8
General Inorganics		-		II	
Conductivity	5 uS/cm	1020	-	944	-
Cyanide, free	0.03 ug/g dıy	<0.03	-	<0.03	-
pH	0.05 pH Units	7.29		7.16	-
SAR	0.01	0.68	-	1.25	
letais	• •		• • • • • • • • • • • • • • • • • • • •		
Antimony	1 ug/g dry	2	1	5	<1
Arsenic	1 ug/g dry	1	<1	2	1
Barium	10 ug/g dry	239	122	241	200
Beryllium	0.5 ug/g dry	0.8	<0.5	0.8	<0.5
Boron, available	0.5 ug/g dry	0.5	<0.5	2.0	<0.5
Cadmium	0.5 ug/g dry	0.6	<0.5	0.8	<0.5
Chromium	5 ug/g dry	46	22	54	24
Chromium (VI)	0.4 ug/g dry	<0.4	<0.4	<0.4	<0.4
Cobatt	5 ug/g dry	11	7	12	8
Copper	5 ug/g dry	32	18	38	17
Iron	200 ug/g dry	46300	28200	40300	34200
Lead	1 ug/g dry	12	6	22	9
Мегсилу	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Mołybdenum	1 ug/g dry	<1	<1	<1	<1
Nickel	5 ug/g dry	22	14	20	16
Selenium	1 ug/g dry	<1	<1	<1	<1
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1 ug/g dry	<1	<1	<1	<1
- <u>-</u> Vanadium	10 ug/g dry	59	35	49	39
Zinc	20 ug/g dry	181	41	2040	37
/olatiles	• •				
Benzene	0.002 ug/g dry	<0.002	-	<0.002	-
Bromodichloromethane	0.002 ug/g dry	<0.002	-	<0.002	-
Bromoform	0.002 ug/g dry	<0.002	-	<0.002	-

1-800-749-1947 РанасецФранасеціава, сом

WWW, PARACELLABS.COM

0 TTANA 900-2319 St. Laurent Birst. Othma. Dir K'G 4.38 NJ 551 55AUGA Gase Kumat 62 Unit 927 Mesetshale. CN 1.56 6.3 NIAGARA FALLS SNIV Morroy Gavy Ca Nispas Fart, ON LSJ CAS SARN JA 123 Chosura St. N. Sarna, ON NYT 517

Page 3 of 12

Client: Paterson Group Consulting Engineers

order # 0835132 í.es

Report Date: 05-Sep-2008 Order Date:28-Aug-2008

Client PO: 6531		Project Description	n: PE1114		e
	Client ID: Sample Date: Sample ID:	Lagoon 1 28-Aug-08 0835132-01	Lagoon 2 28-Aug-08 0835132-02	Lagoon 3 28-Aug-08 0835132-03	MW3 SS6 28-Aug-08 0835132-04
	MDL/Units	Soil	Soil	Soil	Soil
Bromomethane	0.003 ug/g dry	<0.003	-	<0.003	
Carbon Tetrachloride	0.002 ug/g dry	<0.002	-	<0.002	-
Chlorobenzene	0.002 ug/g dry	<0.002	-	<0.002	
Chloroethane	0.005 ug/g dry	<0.005	-	<0.005	
Chloroform	0.003 ug/g dry	<0.003	-	<0.003	-
Chloromethane	0.020 ug/g dry	<0.020	-	<0.020	-
Dibromochloromethane	0.002 ug/g dry	<0.002	-	<0.002	-
1,2-Dibromoethane	0.002 ug/g dry	<0.002	-	<0.002	-
1,2-Dichlorobenzene	0.002 ug/g dry	<0.002	-	<0.002	-
1,3-Dichlorobenzene	0.002 ug/g dry	<0.002	-	<0.002	
1,4-Dichlorobenzene	0.002 ug/g dry	<0.002	-	<0.002	-
1,1-Dichloroethane	0.002 ug/g dry	<0.002	-	<0.002	-
1,2-Dichloroethane	0.002 ug/g dry	<0.002	-	<0.002	-
1,1-Dichloroethylene	0.002 ug/g dry	<0.002	-	<0.002	-
cis-1,2-Dichloroethylene	0.002 ug/g dry	<0.002	-	<0.002	-
trans-1,2-Dichloroethylene	0,003 ug/g dry	<0.003	-	<0.003	-
1,2-Dichloropropane	0.002 ug/g dry	<0.002	-	<0.002	-
cis-1,3-Dichloropropylene	0.002 ug/g dry	<0.002	-	<0.002	-
trans-1,3-Dichloropropylene	0.002 ug/g dry	<0.002	-	<0.002	-
Ethylbenzene	0.002 ug/g dry	<0.002	-	<0.002	-
Melhylene Chloride	0.010 ug/g dry	<0.010	-	<0.010	-
Styrene	0,002 ug/g dry	<0.002	-	<0.002	-
1,1,1,2-Tetrachloroethane	0,003 ug/g dry	<0.003	-	<0.003	-
1,1,2,2-Tetrachloroelhane	0.003 ug/g dry	<0.003	-	<0.003	-
Tetrachloroethylene	0.002 ug/g dry	<0.002	-	<0.002	-
Toluene	0.002 ug/g dry	<0.002	-	<0.002	-
1,1,1-Trichloroethane	0.002 ug/g dry	<0.002	-	<0.002	-
1,1,2-Trichloroethane	0.002 ug/g dry	<0.002	-	<0.002	-
Trichloroethylene	0.003 ug/g dīy	<0.003		<0.003	-
Trichlorofluoromethane	0,005 ug/g dry	<0.005	-	<0.005	-
1,3,5-Trimethylbenzene	0.003 ug/g dry	<0.003	-	<0.003	
Vinyl chloride	0.002 ug/g dry	<0.002	-	<0.002	-

1-800-749-1947 2: Paracel@Paracellabs.com

WWW.PARACELLABS.COM

OTTANA SO9 2219 St. Lauren Bivel Orenne OFF KIG AJS MISSISSAUGA 6545 Kinnat Pit Unit #27 Messisson Chi LSN 633

NIAGARA FALLS 5415 Mercing Berry Cat Ningers Field ON 123 043

SANN 2 A 123 Christian St. N. Sanna, Ura M7T ST.

Page 4 of 12

Client: Paterson Group Consulting Engineers

Client PO: 6531

ż

Order #: 0835132

Report Date: 05-Sep-2008 Order Date:28-Aug-2008

	Client ID: Sample Date: Sample ID: MDL/Units	Lagoon 1 28-Aug-08 0835132-01 Soil	Lagoon 2 28-Aug-08 0835132-02 Soil	Lagoon 3 28-Aug-08 0835132-03 Soil	MW3 SS6 28-Aug-08 0835132-04 Soil
m,p-Xylenes	0.002 ug/g dry	<0.002	-	<0.002	-
o-Xylene	0.002 ug/g dry	<0.002	-	<0.002	-
4-Bromofluorobenzene	Surrogate	88.7%	-	97.3%	-
Dibromofluoromethane	Surrogate	90.3%	+	92.4%	
Toluene-d8	Surrogate	94.1%	· ·	92.5%	-
Hydrocarbons			• • • • • •	4	•
F1 PHCs (C6-C10)	10 ug/g dry	-	<10	-	<10
F2 PHCs (C10-C16)	10 ug/g dry	-	<10	-	<10
F3 PHCs (C16-C34)	10 ug/g dry	-	94	-	148
F4 PHCs (C34-C50)	10 ug/g dry	-	<10	-	<10

Project Description: PE1114

34 1.800+749+1947 PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM 071ANA 300-2313 St. Laurent Blut. Orana, Oh KiG 1.3 H 1 & 51 <u>5 SAU GA</u> See Kamar Ba Unit 427 See Samar Ba Unit 427 NIAGARA_FALLS 5415 Monory Gory OL Niggra Falz, ON LSJ GAS

SARNIA 123 Constone St. M. Semia, GN APT 727

Page 5 of 12

Certificate of Analysis

Order #>0835133

Report Date: 29-Aug-2008 Order Date:28-Aug-2008

Client: Paterson Group Consulting Engineers

Client PO: 6531

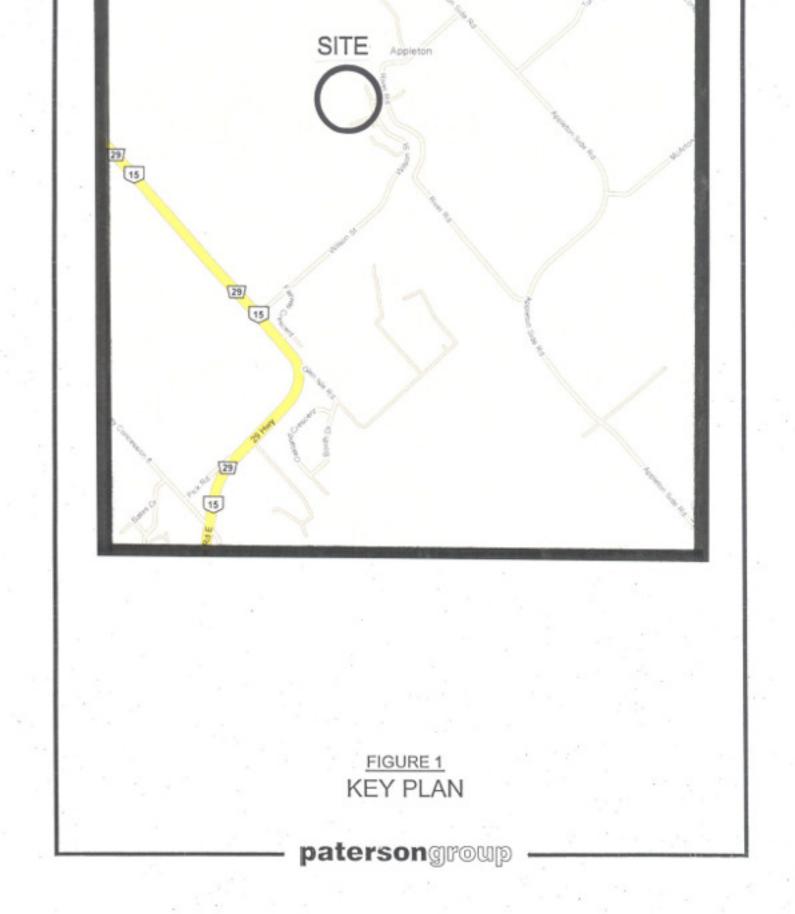
Project Description: PE1114

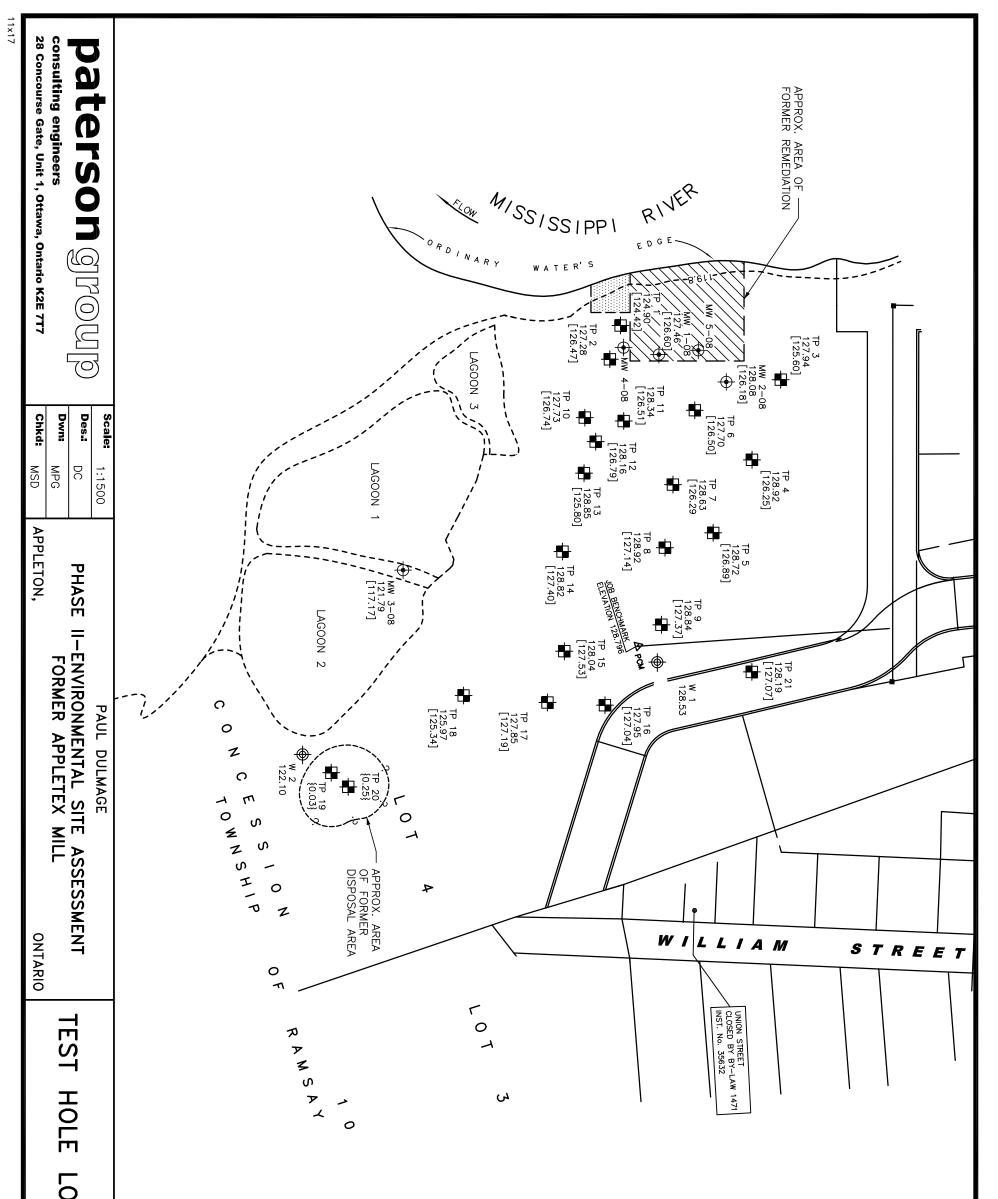
Lead				Matrix: Paint ple Date: 28-Aug-08
Paracel ID	Client ID	Units	MDL	Result
0835133-01	S1	ug/g	50	<50
0835133-02	S2	ug/g	50	<50

L 800-749-1947 Paracel@parasellabs.com Why.paracellabs.com оттана 560-2219 St. Luncht The Откел, 614 KIC 4,8 Н 15 51 55 8 UGA 584 К Amar Pat, Ums 127 Ималаан да, Он 1210 6,8 NTAGARA PALLS 4915 Marring Blans Co Notaria Field, ON L22 043 3AMNEA 123 Chrosting St. M. 59008, 35, NPT 677

Page 3 of 7

APPENDIX 2


FIGURE 1 - KEY PLAN


DRAWING PE1114-4 - TEST HOLE LOCATION PLAN

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PE1114-4 - TEST HOLE LOCATION PLAN

	Č										
	CATION PLAN		BASE PLAN, SURFACE EL PROVIDED E		{0.25}	[117.17]	121.79	•	÷	₽	LEGEND:
Date: 10/2008	2	^{Dwg. No.} PE1114-4	BASE PLAN, TEST HOLE LOCATIONS AND GROUND SURFACE ELEVATIONS AT TEST HOLE LOCATIONS PROVIDED BY G.A. SMITH SURVEYING LTD.	APPROXIMATE AREA OF SOIL CONTAMINATION	DEPTH TO BEDROCK (m)	BEDROCK SURFACE ELEVATION (m)	GROUND SURFACE ELEVATION (m)	MONITORING WELL LOCATION, BY OTHERS	MONITORING WELL LOCATION	TEST PIT LOCATION	